Det kalles en parabola..
En parabola er et flyfigur, bestemt av
et fast punkt (kalt fokus på parabolen)
og en fast linje (kalt direksjonen til parabolen)
Parabolen består av alle pintene i flyet, hvis avstand til fokus er lik avstanden til direktoren.
(Avstanden fra et punkt til en linje er lengden av vinkelrett.
Her er et bilde fra wikibooks-linken jeg gir nedenfor:
Her er en link for mer informasjon:
Grafen for en kvadratisk funksjon har x-avskjærer -2 og 7/2, hvordan skriver du en kvadratisk ligning som har disse røttene?
Finn f (x) = økse ^ 2 + bx + c = 0 å vite de 2 reelle røttene: x1 = -2 og x2 = 7/2. Gitt 2 reelle røtter c1 / a1 og c2 / a2 av en kvadratisk ligning ax ^ 2 + bx + c = 0, er det 3 relasjoner: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Diagonal Sum). I dette eksemplet er de 2 reelle røttene: c1 / a1 = -2/1 og c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. Den kvadratiske ligningen er: Svar: 2x ^ 2 - 3x - 14 = 0 (1) Sjekk: Finn de to reelle røttene av (1) ved den nye AC-metoden. Konvertert ligning: x ^ 2 - 3x - 28 = 0 (2). Løs ligning (2). Rødder har forskjel
Hvilken setning beskriver best mulig ligningen (x + 5) 2 + 4 (x + 5) + 12 = 0? Ligningen er kvadratisk i form fordi den kan omskrives som en kvadratisk ligning med u substitusjon u = (x + 5). Ligningen er kvadratisk i form fordi når den er utvidet,
Som forklart nedenfor vil u-substitusjon beskrive den som kvadratisk i deg. For kvadratisk i x, vil utvidelsen ha den høyeste effekten av x som 2, best beskriver den som kvadratisk i x.
Skiss grafen for y = 8 ^ x som angir koordinatene til noen punkter hvor grafen krysser koordinataksene. Beskriv fullstendig transformasjonen som forvandler grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenfor. Eksponentielle funksjoner uten vertikal transformasjon krysse aldri x-aksen. Som sådan vil y = 8 ^ x ikke ha x-avskjæringer. Det vil ha en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal likne følgende. grafen for y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhet til venstre slik at det er y- avskjære ligger nå på (0, 8). Også du vil se at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåpentligvis hjelper dette!