Svar:
Finn midtpunktet og skråningen på Line AB og gjør skråningen til en negativ gjensidig, så finn y-akselpluggen i midtpunktskoordinatet. Ditt svar vil være
Forklaring:
Hvis punkt A er (-2, 1) og punkt B er (1, 3) og du må finne linjen vinkelrett på den linjen og passerer gjennom midtpunktet må du først finne midtpunktet til AB. For å gjøre dette kobler du det til ligningen
Så for vårt midtpunkt i AB får vi (-.5, 2). Nå må vi finne bakken på AB. for å gjøre dette bruker vi
Så vår helling av linje AB er 3/2. Nå tar vi motsatt gjensidig* av skråningen for å lage en ny linjekvasjon. Som er
Så sett b tilbake i get
* motsatt gjensidig er en brøkdel med topp- og bunnstallet byttet og multiplisert med -1
La P (x_1, y_1) være et punkt og la l være linjen med ligning ax + by + c = 0.Vis avstanden d fra P-> l er gitt av: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Finn avstanden d av punktet P (6,7) fra linjen l med ligning 3x + 4y = 11?
D = 7 La l-> a x + b y + c = 0 og p_1 = (x_1, y_1) et punkt ikke på l. Anta at b ne 0 og kaller d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 etter å ha erstattet y = - (a x + c) / b til d ^ 2 vi har d ^ 2 = ( x - x_1) ^ 2 + ((c + akse) / b + y_1) ^ 2. Det neste trinnet er å finne d ^ 2 minimum angående x så vi finner x slik at d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + akse) / b + y_1 )) / b = 0. Dette forekommer for x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ved å erstatte denne verdien til d ^ 2 får vi d ^ 2 = + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) så d = (c + a x_1 + b y_1) / sqrt (
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (5,3) og (8,8) midtpunktet på de to punktene?
Linjens likning er 5 * y + 3 * x = 47 Koordinatene til midtpunktet er [(8 + 5) / 2, (8 + 3) / 2] eller (13 / 2,11 / 2); Hellingen m1 av linjen som går gjennom (5,3) og (8,8) er (8-3) / (8-5) eller5 / 3; Vi vet at kondisjonen av vinkelretthet av to linjer er som m1 * m2 = -1 hvor m1 og m2 er bakkene til de vinkelrette linjene. Så linjens helling blir (-1 / (5/3)) eller -3/5 Nå er ligningens linje som går gjennom midtpunktet (13 / 2,11 / 2) y-11/2 = -3/5 (x-13/2) eller y = -3 / 5 * x + 39/10 + 11/2 eller y + 3/5 * x = 47/5 eller 5 * y + 3 * x = 47 [Svar]
Hva er ligningen av linjen som er vinkelrett på linjen som går gjennom (-8,10) og (-5,12) midtpunktet på de to punktene?
Se en løsningsprosess under: Først må vi finne midtpunktet for de to punktene i problemet. Formelen for å finne midtpunktet til et linjesegment gi de to sluttpunktene: M = ((farge (rød) (x_1) + farge (blå) (x_2)) / 2, (farge (rød) (y_1) + farge (blå) (y_2)) / 2) M er midtpunktet og de oppgitte punktene er: (farge (rød) (x_1), farge (rød) (y_1)) og (farge (blå) (x_2) farge (blå) (- 5)) / 2, (farge (rød) (10) + farge (blå) (farge (rød) 12)) / 2) M = (-13/2, 22/2) M = (-6,5, 11) Deretter må vi finne bakken på linjen som inneholder de to punkt