Hvordan bruker du Herons formel til å finne området i en trekant med sider av lengder 7, 5 og 7?

Hvordan bruker du Herons formel til å finne området i en trekant med sider av lengder 7, 5 og 7?
Anonim

Svar:

# Område = 16,34587 # kvadratiske enheter

Forklaring:

Heltens formel for å finne område av trekanten er gitt av

# Område = sqrt (r (r-a) (r-b) (S-c)) #

Hvor # S # er semi perimeter og er definert som

# S = (a + b + c) / 2 #

og #a, b, c # er lengdene av de tre sidene av trekanten.

Her la # a = 7, b = 5 # og # c = 7 #

#implies s = (7 + 5 + 7) /2=19/2=9.5#

#implies s = 9.5 #

#implies s-a = 9,5-7 = 2,5, s-b = 9,5-5 = 4,5 og s-c = 9,5-7 = 2,5 #

#implies s-a = 2.5, s-b = 4.5 og s-c = 2.5 #

#implies Område = sqrt (9,5 * 2,5 * 4,5 * 2,5) = sqrt267.1875 = 16.34587 # kvadratiske enheter

#implies Område = 16.34587 # kvadratiske enheter