Svar:
Omkrets
Område
Forklaring:
Fordi det er en likestillende trekant, er trekantens ben lik, derfor sidene er
Omkretsen av trekanten ville være alle sidene lagt opp
Derfor vil omkretsen av denne trekanten være
Arealet av en trekant er:
i dette tilfellet,
Vi kan plugge dette inn og få
derfor er området av trekanten
Høyden til en trekant øker med en hastighet på 1,5 cm / min mens trekantens område øker med en hastighet på 5 cm / min. I hvilken grad er bunnen av trekanten endret når høyden er 9 cm og arealet er 81 kvadrat cm?
Dette er en relatert type (av endring) type problem. Berørte variablene er a = høyde A = området, og siden området av en trekant er A = 1 / 2ba, trenger vi b = base. Gitte endringshastigheter er i enheter per minutt, så den (usynlige) uavhengige variabelen er t = tid i minutter. Vi blir gitt: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi blir bedt om å finne (db) / dt når a = 9 cm og A = 81cm "" 2 A = 1 / 2ba, differensiering med t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi trenger produktregelen til høyre. (dA) / dt = 1/2 (db) / dt a + 1 / 2b
For å stimulere en berg-og dalbane, er en vogn plassert i høyden på 4 m og tillatt å rulle fra hvile til bunn. Finn hver av følgende for vognen hvis friksjon kan ignoreres: a) hastigheten i høyden på 1 m, b) høyden når hastigheten er 3 m / s?
A) 7,67 ms ^ -1 b) 3,53m Som det sies å ikke vurdere friksjonskraft, vil hele energien i systemet forbli konservert under denne nedstigningen. Så da vognen var på toppen av bergbanen, var den i ro, så i den høyden på h = 4m hadde den bare potensiell energi, dvs. mgh = mg4 = 4mg hvor m er massen av vognen og g er akselerasjon på grunn av tyngdekraften. Nå, når det kommer i en høyde av h '= 1m over bakken, vil den ha litt potensiell energi og litt kinetisk energi.Så, hvis i den høyden sin hastighet er v så vil total energi i den høyden være mgh
Hva er hastigheten for endring av bredden (i ft / sek) når høyden er 10 fot, hvis høyden er avtagende i det øyeblikket med en hastighet på 1 fot / sek. Et rektangel har både en skiftende høyde og en skiftende bredde , men høyden og bredden endrer seg slik at rektangelområdet alltid er 60 kvadratmeter?
Forandringshastigheten for bredden med tiden (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / ) = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / (()) dh) = - (60) / (h2 2) Så (dW) / (dt) = - (- (60) / (h2 2)) = (60) / (h ^ 2) Så når h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"