Svar:
Forklaring:
La
Dermed er de to heltallene
Kontrollerer vårt resultat:
Summen av tre tall er 4. Hvis den første blir doblet og den tredje er tredoblet, er summen to mindre enn den andre. Fire mer enn den første legges til den tredje er to flere enn den andre. Finn tallene?
1 = 2, 2 = 3, 3 = -1 Opprett de tre ligningene: La 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variabelen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved å eliminere variabelen z ved å multiplisere EQ. 1 + EQ. 3 ved -2 og legger til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved å sette x inn i EQ. 2 og EQ. 3: EQ. 2 med x: "" 4 - y
Å vite formelen til summen av N-tallene a) Hva er summen av de første N sammenhengende firkantede heltall, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Summen av de første N sammenhengende kube-helhetene Sigma_ (k = 1) ^ N k ^ 3?
For S_k (n) = sum_ {i = 0} ^ ni ^ S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Vi har sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 løsning for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni men sum_ {i = 0} ^ ni = ((n + 1) n) / 2 så sum_ {i = 0} ^ ni ^ 2 = +1) ^ 3 / 3- (n + 1) /
Romano har tre brødre og deres alder er sammenhengende like heltall. Hva er alle tre alder slik at summen av den første broren og fire ganger den andre er 128?
Forutsatt at x er alderen til den første broren, er x + 2 alderen til den andre broren, og x + 4 er alderen på den tredje. x + 4 (x + 2) = 128 x + 4x + 8 = 128 5x = 120 x = 24 Den yngste er 24 år gammel, den middelste er 26 år og den eldste er 28 år gammel. Øvelseøvelser: Tre påfølgende odde heltall er skrevet på en side. Summen av to ganger den første lagt til en mer enn en tredjedel av det største nummeret er 28. Finn de tre tallene.