Arealet av en trekant er 24cm² [kvadratisk]. Basen er 8cm lengre enn høyden. Bruk denne informasjonen til å sette opp en kvadratisk ligning. Løs ligningen for å finne lengden på basen?
La lengden av basen være x, så høyden vil være x-8, så trekantets område er 1/2 x (x-8) = 24 eller, x ^ 2 -8x-48 = 0 eller, x ^ 2 -12x + 4x-48 = 0 eller, x (x-12) +4 (x-12) = 0 eller, (x-12) (x + 4) = 0 så, enten x = 12 eller x = -4 men lengden på trekant kan ikke være negativ, så her lengden på basen er 12 cm
Y = a (x-h) 2 + k? a.minimum b.discriminant eller c. Standardform for en kvadratisk ligning.
Det er standardformen til en kvadratisk Standard-skjema involverer ofte (x - h) og (y - k). Vi vet at dette er en kvadratisk på grunn av kraften til to.
Hvilken setning beskriver best mulig ligningen (x + 5) 2 + 4 (x + 5) + 12 = 0? Ligningen er kvadratisk i form fordi den kan omskrives som en kvadratisk ligning med u substitusjon u = (x + 5). Ligningen er kvadratisk i form fordi når den er utvidet,
Som forklart nedenfor vil u-substitusjon beskrive den som kvadratisk i deg. For kvadratisk i x, vil utvidelsen ha den høyeste effekten av x som 2, best beskriver den som kvadratisk i x.