Svar:
Inflexionspunktet er:
Forklaring:
1 - Først må vi finne det andre avledet av vår funksjon.
2 - For det andre likestiller vi det derivatet
Neste,
Nå skal vi uttrykke det i skjemaet
Hvor
Ved å sammenligne koeffisientene til
og
Og
Men vi kjenner identiteten,
Derfor
I et nøtteskall,
Så den generelle løsningen av
Så vil inflexionspunktene være et punkt som har koordinater:
Vi har to saker å avtale med, Sak 1
Sak 2
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan verifiserer du [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Bevis under utvidelse av ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), og vi kan bruke dette: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identitet: sin ^^ sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + 2x + cos ^ 2x = 1) = 1-sinBcosB
Hvordan finner du grensen til [(sin x) * (sin ^ 2 x)] / [1 - (cos x)] når x nærmer seg 0?
Utfør noen konjugatmultiplikasjon og forenkle for å få lim_ (x-> 0) (sinx * sin ^ 2x) / (1-cosx) = 0 Direkte substitusjon produserer ubestemt form 0/0, så vi må prøve noe annet. Prøv å multiplisere (sinx * sin ^ 2x) / (1-cosx) med (1 + cosx) / (1 + cosx): (sinx * sin ^ 2x) / (1-cosx) * (1 + cosx) / + cosx) = (sinx * sin ^ 2x (1 + cosx)) / (1-cosx) (1 + cosx)) = (sinx * sin ^ 2x (1 + cosx)) / (1-cos ^ 2x) Denne teknikken kalles konjugatmultiplikasjon, og det fungerer nesten hver gang. Tanken er å bruke forskjellen på kvadrategenskaper (a-b) (a + b) = a ^ 2-b ^ 2 for å