Svar:
Bevis under
Forklaring:
Utvidelse av
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Hvordan viser du at sqrt (3) cos (x + pi / 6) - cos (x + pi / 3) = cos (x) -sqrt3sinx?
LHS = sqrt3cos (x + pi / 6) -kos (x-pi / 3) = sqrt3 [cosx * cos (pi / 6) -sinx * sin (pi / 6)] - [cosx * cos (pi / 3) -sinx * sin (pi / 3)] = sqrt3 [cosx * (sqrt3 / 2) -sinx * (1/2)] - [cosx * (1/2) -sinx * (sqrt3 / 2)] = (3cosx -sqrt3sinx) / 2- (cosx-sqrt3sinx) / 2 = (3cosx-sqrt3sinx-cosx + sqrt3sinx) / 2 = (2cosx) / 2 = cosx = RHS
Hvordan skiller du y = cos (cos (cos (x)))?
Dy / dx = -sin (cos (cos (x))) sin (cos (x)) synd (x) Dette er et begynnende skremmende problem, men i virkeligheten, med en forståelse av kjedestyrken, er det ganske enkel. Vi vet at for en funksjon av en funksjon som f (g (x)), forteller kjedestyrelsen oss at: d / dy f (g (x)) = f '(g (x) g' denne regelen tre ganger, kan vi faktisk bestemme en generell regel for enhver funksjon som denne hvor f (g (h (x))): d / dy f (g (h (x))) = f ' (x))) g '(h (x)) h' (x) Så gjelder denne regelen, gitt at: f (x) = g (x) = h (x) = cos (x) ) = g (x) = h (x) = -in (x) gir svaret: dy / dx = -sin (cos (cos (x))