Hva er forskjellen mellom en asymptote og et hull?

Hva er forskjellen mellom en asymptote og et hull?
Anonim

Svar:

De to konseptene er ganske forskjellige og bare noen ganger sammenfallende.

Se forklaring …

Forklaring:

En vertikal asymptote tilsvarer vanligvis et "hull" i domenet, og en horisontal asymptote tilsvarer ofte et "hull" i området, men det er de eneste korrespondanser jeg kan tenke på.

For eksempel kan vi definere funksjonen # T # som følger:

# t (x) = {(0, "hvis" x = ((2k + 1) pi) / 2 "for noe" k i ZZ), (tan (x), "ellers"):} #

Deretter #t (x) # har vertikale asymptoter på # ((2k + 1) pi) / 2 # for alle #k i ZZ #, men har ingen "hull".

Funksjonen #f (x) = (x ^ 2-1) / (x-1) # har ingen asymptoter, (med mindre du teller #y = x + 1 #), men det har et "hull" på # X = 1 #, hvor #f (x) # er ikke definert.