Svar:
Det er to enhetvektorer her, avhengig av din operasjonsordning. De er
Forklaring:
Når du tar kryssproduktet av to vektorer, beregner du vektoren som er ortogonal til de to første. Imidlertid løsningen av
Som en rask oppdatering, et kryssprodukt av
og du får hvert begrep ved å ta produktet av de diagonale termer som går fra venstre mot høyre, ved å starte fra en gitt vektorgruppe (i, j eller k) og subtrahere produktet av diagonale termer som går fra høyre til venstre, startende fra samme enhet vektorpost:
For de to løsningene, lar vi sette:
La oss se på begge løsningene:
# VecAoxvecB #
Som nevnt over:
# VecBoxvecA #
Som en flip til den første formuleringen, ta diagonalene igjen, men matrisen er dannet annerledes:
Legg merke til at subtraksjonene er vendt rundt. Dette er hva som forårsaker "Lik og motsatt" form.
Hva er enhetsvektoren som er ortogonal mot flyet som inneholder (20j + 31k) og (32i-38j-12k)?
Enhetsvektoren er == 1 / 1507,8 <938,992, -640> Vektoren ortogonale til 2 vektorer i et plan beregnes med determinanten | (veci, vecj, veck), (d, e, f), (g, h, i) | hvor <d, e, f> og <g, h, i> er de 2 vektorer Her har vi veca = <0,20,31> og vecb = <32, -38, -12> Derfor | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + vik (0 * -38-32 * 20) = <938.992, -640> = vecc Verification ved å gjøre 2 punkt produkter <938.992, -640>. <0,20,
Hva er enhetsvektoren som er ortogonal mot flyet som inneholder (29i-35j-17k) og (41j + 31k)?
Enhetsvektoren er = 1 / 1540,3 <-388, -899,1189> Vektoren vinkelrett på 2 vektorer beregnes med determinanten (kryssproduktet) | (veci, vecj, veck), (d, e, f), (g, h, i) | hvor <d, e, f> og <g, h, i> er de 2 vektorer Her har vi veca = <29, -35, -17> og vecb = <0,41,31> Derfor | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = Veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + Veck | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 +35 * 0) = <- 388, -899,1189> = vecc Verifisering ved å gjøre 2 prikkprodukter <-388, -899,1
Hva er enhetsvektoren som er ortogonal mot flyet som inneholder (29i-35j-17k) og (32i-38j-12k)?
Svaret er = 1 / 299,7 <-226, -196,18> Vektoren perpendiculatr til 2 vektorer beregnes med determinanten (kryssprodukt) | (veci, vecj, veck), (d, e, f), (g, h, i) | hvor <d, e, f> og <g, h, i> er de 2 vektorer Her har vi veca = <29, -35, -17> og vecb = <32, -38, -12> Derfor | (veci, vecj, veck), (29, -35, -17), (32, -38, -12) | = Veci | (-35, -17), (-38, -12) | -vecj | (29, -17), (32, -12) | + Veck | (29, -35), (32, -38) | = veci (35 * 12-17 * 38) -vecj (-29 * 12 + 17 * 32) + vik (-29 * 38 +35 * 32) = <- 226, -196,18> = vecc Verifisering ved å gjøre 2 dot-produkter <-226, -19