Svar:
Høyden er
Forklaring:
For en trekant har vi Areal =
Med
Vi blir fortalt det
Vi kan kvitte seg med brøkdelen ved å multiplisere med
Høyden er
Høyden til en trekant øker med en hastighet på 1,5 cm / min mens trekantens område øker med en hastighet på 5 cm / min. I hvilken grad er bunnen av trekanten endret når høyden er 9 cm og arealet er 81 kvadrat cm?
Dette er en relatert type (av endring) type problem. Berørte variablene er a = høyde A = området, og siden området av en trekant er A = 1 / 2ba, trenger vi b = base. Gitte endringshastigheter er i enheter per minutt, så den (usynlige) uavhengige variabelen er t = tid i minutter. Vi blir gitt: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi blir bedt om å finne (db) / dt når a = 9 cm og A = 81cm "" 2 A = 1 / 2ba, differensiering med t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi trenger produktregelen til høyre. (dA) / dt = 1/2 (db) / dt a + 1 / 2b
Basen av en trekant av et gitt område varierer omvendt som høyden. En trekant har en base på 18cm og en høyde på 10cm. Hvordan finner du høyden på en trekant med like område og med en base på 15cm?
Høyde = 12 cm Arealet av en trekant kan bestemmes med ligningsområdet = 1/2 * base * høyde Finn området for den første trekant ved å erstatte målingene av trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 La høyden av den andre triangelen = x. Så området ligningen for den andre trekanten = 1/2 * 15 * x Siden områdene er like, 90 = 1/2 * 15 * x ganger begge sider ved 2. 180 = 15x x = 12
Hva er hastigheten for endring av bredden (i ft / sek) når høyden er 10 fot, hvis høyden er avtagende i det øyeblikket med en hastighet på 1 fot / sek. Et rektangel har både en skiftende høyde og en skiftende bredde , men høyden og bredden endrer seg slik at rektangelområdet alltid er 60 kvadratmeter?
Forandringshastigheten for bredden med tiden (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / ) = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / (()) dh) = - (60) / (h2 2) Så (dW) / (dt) = - (- (60) / (h2 2)) = (60) / (h ^ 2) Så når h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"