Svar:
Tallene er
Forklaring:
Tilsvarende like tall varierer med 2.
La tallene være
Deres sum er
Skriv en ligning for å vise dette
Tallene er
Kryss av:
Tre påfølgende positive like heltall er slik at produktet det andre og tredje heltall er tjue mer enn ti ganger det første heltall. Hva er disse tallene?
La tallene være x, x + 2 og x + 4. Deretter (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 og -2 Siden problemet angir at heltallet må være positivt, har vi at tallene er 6, 8 og 10. Forhåpentligvis hjelper dette!
Hva er tre påfølgende odde positive heltall slik at tre ganger summen av alle tre er 152 mindre enn produktet av det første og andre heltall?
Tallene er 17,19 og 21. La de tre påfølgende odde positive heltallene være x, x + 2 og x + 4 tre ganger deres sum er 3 (x + x + 2 + x + 4) = 9x + 18 og produkt av først og andre heltall er x (x + 2) som tidligere er 152 mindre enn sistnevnte x (x + 2) -152 = 9x + 18 eller x ^ 2 + 2x-9x-18-152 = 0 eller x ^ 2-7x + 170 = 0 eller (x-17) (x + 10) = 0 og x = 17 eller -10 da tallene er positive, de er 17,19 og 21
Hva er to påfølgende like heltall slik at summen deres er like forskjell på tre ganger større og to ganger mindre?
4 og 6 La x = det minste av de sammenhengende like heltallene. Det betyr at den største av de to påfølgende like heltallene er x + 2 (fordi like tall er 2 verdier fra hverandre). Summen av disse to tallene er x + x + 2. Forskjellen på tre ganger større og to ganger mindre er 3 (x + 2) -2 (x). Angi de to uttrykkene lik hverandre: x + x + 2 = 3 (x + 2) -2 (x) Forenkle og løse: 2x + 2 = 3x + 6-2x 2x + 2 = x + 6 x = 4 Så jo mindre heltall er 4 og jo større er 6.