For en gitt funksjon
Nå må vi vise det, hvis
Med dette i tankene, la oss se hva
Siden
Definer en ny variabel
Derfor, hvis
Hvordan vet du om f (x) = e ^ (x ^ 2-1) er en jevn eller merkelig funksjon?
Selv funksjon "Selv funksjon": f (x) = f (-x) "Odd funksjon": f (-x) = - f (x) f (x) = e ^ (x ^ 2-1) f (- x) = e ^ ((- x) ^ 2-1) = e ^ (x ^ 2 + 1) Siden f (x) = f (-x) er funksjonen jevn.
La f (x) = x-1. 1) Verifiser at f (x) er verken jevn eller merkelig. 2) Kan f (x) skrives som summen av en jevn funksjon og en merkelig funksjon? a) Hvis så, oppgi en løsning. Er det flere løsninger? b) Hvis ikke, bevis på at det er umulig.
La f (x) = | x -1 |. Hvis f var jevn, ville f (-x) være lik f (x) for alle x. Hvis f var merkelig, ville f (-x) være -f (x) for alle x. Vær oppmerksom på at for x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Siden 0 ikke er lik 2 eller til -2, er f ikke verken jevn eller merkelig. Kan f skrives som g (x) + h (x), hvor g er jevn og h er merkelig? Hvis det var sant, så g (x) + h (x) = | x - 1 |. Ring denne setningen 1. Erstatt x for -x. g (-x) + h (-x) = | -x - 1 | Siden g er jevn og h er merkelig, har vi: g (x) - h (x) = | -x - 1 | Ring denne setningen. 2. Sett setninger 1 og 2 sammen, vi ser at g (x)
Anta at f (x) er jevn funksjon. Hvis f (x) er kontinuerlig ved a, viser f (x) kontinuerlig ved -a?
Se nedenfor jeg er ikke 100% sikker på dette, men dette ville være mitt svar. Definisjonen av en jevn funksjon er f (-x) = f (x) Derfor f (-a) = f (a). Siden f (a) er kontinuerlig og f (-a) = f (a), så er f (-a) også kontinuerlig.