Svar:
Vennligst se beviset nedenfor
Forklaring:
Vi trenger
Derfor,
Deler av alle vilkårene av
Svar:
Se Forklaring
Forklaring:
La
Deler med
Deler med
dermed bevist.
Svar:
Forklaring:
# "ved hjelp av" farge (blå) "trigonometriske identiteter" #
# • farge (hvit) (x) sin (x + y) = sinxcosy + cosxsiny #
# • farge (hvit) (x) cos (x-y) = cosxcosy + sinxsiny #
# "betrakt venstre side" #
# = (Sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #
# "dele vilkår på teller / nevner av" costhetacosphi #
# "og avbryte vanlige faktorer" #
# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) = ((sintheta) / costheta + sinphi / cosphi) / (1 + sintheta / costhetaxxsinphi / cosphi #
# = (Tantheta + tanphi) / (1 + tanthetatanphi) #
# = "høyre side" rArr "verifisert" #
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er litt forvirret hvis jeg gjør Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), det blir negativt som cos (180 ° -teta) = - costheta in den andre kvadranten. Hvordan går jeg med å bevise spørsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2x (5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hvordan uttrykker du cos theta - cos ^ 2 theta + sec theta når det gjelder synd theta?
Sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) bare forenkle det videre hvis du trenger. Fra de oppgitte dataene: Hvordan uttrykker du cos theta-cos ^ 2 theta + sec theta når det gjelder syndet theta? Løsning: fra de grunnleggende trigonometriske identitetene Sin ^ 2 theta + Cos ^ 2 theta = 1 følger cos theta = sqrt (1-sin ^ 2 theta) cos ^ 2 theta = 1-sin ^ 2 theta også sec theta = 1 / cos Theta derfor cos theta-cos ^ 2 theta + sec theta sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) Gud velsigne ... Jeg håper forklaring er nyttig.