Hvordan bevise synd (theta + phi) / cos (theta-phi) = (tantheta + tanphi) / (1 + tanthetatanphi)?

Hvordan bevise synd (theta + phi) / cos (theta-phi) = (tantheta + tanphi) / (1 + tanthetatanphi)?
Anonim

Svar:

Vennligst se beviset nedenfor

Forklaring:

Vi trenger

#sin (a + b) = sinacosb + sinbcosa #

#cos (a-b) = cosacosb + sinasinb #

Derfor, # LHS = sin (theta + phi) / cos (theta-phi) #

# = (Sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

Deler av alle vilkårene av# Costhetacosphi #

# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) #

# = (Sintheta / costheta + sinphi / cosphi) / (1 + sintheta / costheta * sinphi / cosphi) #

# = (Tantheta + tanphi) / (1 + tanthetatanphi) #

# = RHS #

# QED #

Svar:

Se Forklaring

Forklaring:

La

# Y = sin (theta + phi) / cos (theta-phi) #

# Y = (sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

Deler med #cos theta #, # Y = (tanthetacosphi + sinphi) / (cosphi + tanthetasinphi) #

Deler med # Cosphi #, # Y = (tantheta + tanphi) / (1 + tanthetatanphi) #

dermed bevist.

Svar:

# "se forklaring" #

Forklaring:

# "ved hjelp av" farge (blå) "trigonometriske identiteter" #

# • farge (hvit) (x) sin (x + y) = sinxcosy + cosxsiny #

# • farge (hvit) (x) cos (x-y) = cosxcosy + sinxsiny #

# "betrakt venstre side" #

# = (Sinthetacosphi + costhetasinphi) / (costhetacosphi + sinthetasinphi) #

# "dele vilkår på teller / nevner av" costhetacosphi #

# "og avbryte vanlige faktorer" #

# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) = ((sintheta) / costheta + sinphi / cosphi) / (1 + sintheta / costhetaxxsinphi / cosphi #

# = (Tantheta + tanphi) / (1 + tanthetatanphi) #

# = "høyre side" rArr "verifisert" #