Svar:
Forklaring:
Vurder figur 1
I en trapesformet ABCD som tilfredsstiller forholdene til problemet (hvor
Hvis vi tegner to linjer vinkelrett på segmentet AB, som danner segmenter AF og BG, kan vi se det
Siden
Vi kan også se det
Vurder figur 2
Vi ser at trapesen i figur 2 har en annen form enn den i figur 1, men begge tilfredsstiller forholdene til problemet. Jeg presenterte disse to figurene for å vise at informasjonen til problemet ikke tillater å bestemme størrelsen på basen 1 (
I
Siden
Merk: vi kunne prøve å bestemme m og n konjugere disse to ligningene:
I
I
(
Men å løse dette systemet av to likninger, ville vi bare oppdage det m og siden AD er ubestemt.
Jacks høyde er 2/3 av Leslie høyde. Leslie høyde er 3/4 av Lindsay høyde. Hvis Lindsay er 160 cm høy, finn Jacks høyde og Leslie høyde?
Leslie er = 120cm og Jacks høyde = 80cm Leslie er høyde = 3 / avbryt4 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks height = 2 / cancel3 ^ 1xxcancel120 ^ 40/1 = 80cm
Lengden på et rektangel overstiger bredden ved 4 cm. Hvis lengden økes med 3 cm og bredden økes med 2 cm, overstiger det nye området det opprinnelige området med 79 kvm. Hvordan finner du dimensjonene til det gitte rektangelet?
13 cm og 17 cm x og x + 4 er de opprinnelige målene. x + 2 og x + 7 er de nye dimensjonene x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 14 79 = 5x + 14 65 = 5x x = 13
Patrick begynner å vandre i en høyde på 418 fot. Han stiger ned til en høyde på 387 fot og deretter stiger til en høyde 94 meter høyere enn hvor han begynte. Han så ned 132 fot. Hva er høyden av hvor han slutter å vandre?
Se en løsningsprosess under: For det første kan du ignorere 387 fot nedstigningen. Det gir ingen nyttig informasjon til dette problemet. Han stigning forlater Patrick i en høyde på: 418 "føtter" + 94 "føtter" = 512 "føtter" Den andre nedstigningsblader forlater Patrick i en høyde på: 512 "føtter" - 132 "føtter" = 380 "fot"