Svar:
Forklaring:
Fra
# "h" ^ 2 = "a" ^ 2 + "b" ^ 2 #
hvor
# "h =" # Lengden på hypotenuse side# "a =" # Lengde på ett ben# "b =" # Lengde på et annet ben
Ett ben av en riktig trekant er 3,2 cm lang. Lengden på det andre benet er 5,7 centimeter. Hva er lengden på hypotenusen?
Hypotenus av høyre trekant er 6,54 (2 dp) cm lang. La første bein av høyre trekant være l_1 = 3,2 cm. Andre ben av righr-trekanten er l_2 = 5,7 cm. Hypotenus av en riktig trekant er h = sqrt (l_1 ^ 2 + l_2 ^ 2) = sqrt (3.2 ^ 2 + 5,7 ^ 2) = sqrt42.73 = 6.54 (2dp) cm.
Ett ben av en riktig trekant er 96 tommer. Hvordan finner du hypotenus og det andre benet hvis hypotenusens lengde overstiger 2,5 ganger det andre benet med 4 tommer?
Bruk Pythagoras til å etablere x = 40 og h = 104 La x være det andre benet, så hypotenuse h = 5 / 2x +4 Og vi får beskjed om det første benet y = 96 Vi kan bruke Pythagoras ekvation x ^ 2 + y ^ 2 = 2x2 + 4x + 2x + 4 ^ 2x ^ 2 + 9216 = 25x ^ 2/4 + 20x +16 Reordering gir oss x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Multiplikeres gjennom -4 21x ^ 2 + 80x -36800 = 0 Ved å bruke den kvadratiske formelen x = (-b + -sqrt (b ^ 2- 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42 så x = 40 eller x = -1840/42 Vi kan ignorere det negative svaret da vi reagerer på en ek
Ett ben av en riktig trekant er 96 tommer. Hvordan finner du hypotenus og det andre benet hvis hypotenusens lengde overstiger 2 ganger det andre benet med 4 tommer?
Hypotenuse 180,5, ben 96 og 88,25 ca. La det kjente benet være c_0, hypotenuseen er h, overskudddet av h over 2c som delta og det ukjente benet, c. Vi vet at c ^ 2 + c_0 ^ 2 = h ^ 2 (Pytagoras) også h-2c = delta. Subtituting i henhold til h får vi: c ^ 2 + c_0 ^ 2 = (2c + delta) ^ 2. Forenkling, c ^ 2 + 4delta c + delta ^ 2-c_0 ^ 2 = 0. Løsning for c får vi. c = (4delta ^ 2-4 (delta ^ 2-c_0 ^ 2)) / 2 Kun positive løsninger er tillatt c = (2sqrt (4delta ^ 2-delta ^ 2 + c_0 ^ 2) -4delta ) / 2 = sqrt (3delta ^ 2 + c_0 ^ 2) -2delta