Svar:
Hellingen av linjen er -2.
Forklaring:
Hellingen til en hvilken som helst linje kan finne ut om to av koordinatene er kjent. Vi har følgende formel for skråningen av aline hvor de to koordinatene er gitt. (m er helling av linjen).
m =
Her la det første settet av koordinater være
og det andre settet er
Bytter i formelen, vil du ha
Hva er ligningen av linjen som går gjennom (0, -1) og er vinkelrett på linjen som går gjennom følgende punkter: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling av linjen som knytter seg til to punkter (x_1, y_1) og (x_2, y_2) er gitt av (y_2-y_1) / (x_2-x_1) eller (y_1-y_2) / (x_1-x_2) ) Som poengene er (8, -3) og (1, 0), vil linjens lutning bli gitt av (0 - (- 3)) / (1-8) eller (3) / (- 7) det vil si -3/7. Produkt av helling av to vinkelrette linjer er alltid -1. Derfor vil lutningen av linjen vinkelrett på den være 7/3, og derfor kan ligning i skråform bli skrevet som y = 7 / 3x + c Når dette går gjennom punktet (0, -1), legger du disse verdiene i over ligningen -1 = 7/3 * 0 + c eller c = 1 Derfor vil ønsket ligning være
Hva er ligningen av linjen som går gjennom (0, -1) og er vinkelrett på linjen som går gjennom følgende punkter: (13,20), (16,1)?
Y = 3/19 * x-1 Hellingen av linjen går gjennom (13,20) og (16,1) er m_1 = (1-20) / (16-13) = - 19/3 Vi vet tilstanden til perpedicularity mellom to linjer er produkt av deres bakker lik 1: .m_1 * m_2 = -1 eller (-19/3) * m_2 = -1 eller m_2 = 3/19 Så linjen passerer gjennom (0, -1 ) er y + 1 = 3/19 * (x-0) eller y = 3/19 * x-1 graf {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Hva er ligningen av linjen som går gjennom (0, -1) og er vinkelrett på linjen som går gjennom følgende punkter: (-5,11), (10,6)?
Y = 3x-1 "ligningen til en rett linje er gitt av" y = mx + c "hvor m = gradienten &" c = "y-intercept" "vi vil ha gradienten av linjen vinkelrett på linjen" "passerer gjennom de oppgitte punktene" (-5,11), (10,6) vi trenger "" m_1m_2 = -1 for linjen gitt m_1 = (delt) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3 så nødvendig eqn. blir y = 3x + c det går gjennom "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1