Summen av tre påfølgende ulige heltall er 48, hvordan finner du det største heltallet?
Spørsmålet har feil verdi som summen. Summing 3 odde tall vil gi et oddetall. Derimot; Metoden er demonstrert gjennom et eksempel Bare for å gjøre dette arbeidet, kan vi først og fremst oppnå summen. Anta at vi hadde 9 + 11 + 13 = 33 som vårt opprinnelige odde tall. La tallet være ukjent. Da er det andre odde tallet n + 2. Da er det tredje odde tallet n + 4. Så vi har: n + (n + 2) + (n + 4) = 33 3n + 6 = 33 Trekk 6 fra begge sider 3n = 27 Del begge sider med 3 n = 9 Så det største tallet er 9 + 4 = 13
Tre påfølgende ulige heltall er slik at kvadratet av det tredje heltallet er 345 mindre enn summen av rutene i de to første. Hvordan finner du heltallene?
Det er to løsninger: 21, 23, 25 eller -17, -15, -13 Hvis det minste heltall er n, er de andre n + 2 og n + 4 Tolkning av spørsmålet har vi: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345 som ekspanderer til: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 farge (hvit) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Subtrahering n ^ 2 + 8n + 16 fra begge ender finner vi: 0 = n ^ 2-4n-357 farge (hvit) (0) = n ^ 2-4n + 4 -361 farge (hvit) (0) = (n-2) ^ 2-19 ^ 2 farge (hvit) (0) = ((n-2) -19) ((n-2) +19) farge ) N = 21 "" eller "" n = -17 og de tre heltallene er: 21, 23, 25 eller -17, -15, -13 farge (hvit) () Fotno
Hva er tre påfølgende ulige heltall slik at summen av det midterste og største heltallet er 21 mer enn det minste heltallet?
De tre påfølgende ulige heltallene er 15, 17 og 19 For problemer med "påfølgende like (eller merkelige) sifre", er det verdt det ekstra problemet å nøyaktig beskrive "påfølgende" sifre. 2x er definisjonen av et jevnt tall (et tall delbart med 2) Det betyr at (2x + 1) er definisjonen av et oddetall. Så her er "tre påfølgende ulige tall" skrevet på en måte som er langt bedre enn x, y, z eller x, x + 2, x + 4 2x + 1larr minste heltall (det første odde tallet) 2x + 3larr midt heltall det andre odde tallet) 2x + 5larr størst