Hva er vertexformen for y = 2x ^ 2-16x + 32?

Hva er vertexformen for y = 2x ^ 2-16x + 32?
Anonim

Svar:

# Y = 2 (x-4) ^ 2 #

Forklaring:

For å finne vertexformen må du fullføre torget. Så sett likningen lik null, og skill deretter koeffisienten til x, som er 2:

# 0 = x ^ 2-8x + 16 #

Flytt dem (16) til den andre siden, og legg deretter til "c" for å fullføre kvadratet.

# -16 + c = x ^ 2-8x + c #

For å finne c, må du dele det midterste tallet med 2, og deretter firkant det nummeret. så fordi #-8/2=-4#, når du kvadrerer at du får det c er 16. Så legg til 16 til begge sider:

# 0 = x ^ 2-8x + 16 #

Fordi # X ^ 2-8x + 16 # er et perfekt torg, kan du faktorere det inn i # (X-4) ^ 2 #.

Deretter må du multiplisere koeffisienten tilbake i ligningen:

# 0 = 2 (x-4) ^ 2 # Normalt vil du flytte dem tilbake, men i dette tilfellet er vertexet (4,0), så du trenger ikke å gjøre det. Sett deretter ligningen til y og du er ferdig.