Hva er fokus og toppunkt for parabolen beskrevet av 3x ^ 2 + 1x + 2y + 7 = 0?

Hva er fokus og toppunkt for parabolen beskrevet av 3x ^ 2 + 1x + 2y + 7 = 0?
Anonim

Svar:

Vertex er på # =(-1/6, -83/24)# Fokus er på # (-1/6,-87/24)#

Forklaring:

# 2y = -3x ^ 2-x-7 eller y = -3/2 x ^ 2-x / 2-7 / 2 = -3/2 (x ^ 2 + x / 3 + 1/36) + 1 / 24-7 / 2 = -3/2 (x + 1/6) ^ 2-83 / 24 # Vertex er på # =(-1/6, -83/24)# Parabolen åpner ned som koeffisient av # X ^ 2 # er negativ. Avstanden mellom toppunktet og fokus er # 1 / | 4a | = 1 / (4 * 3/2) = 1/6 # Derfor er fokuset på # -1/6, (- 83 / 24-1 / 6) eller (-1 / 6, -87 / 24) # graf {-3 / 2x ^ 2-x / 2-7 / 2 -20, 20, -10, 10} Ans