Svar:
Prime faktorer av # 2025 = 5xx5xx3xx3xx3xx3 #
#sqrt (2025) = 45 #
Forklaring:
Her er et dekomponeringstrær for 2045
#COLOR (hvit) ("xxxxxx") farge (blå) (2025) #
#COLOR (hvit) ("xxxxxxx") Darr #
#COLOR (hvit) ("XXXX") "-------------" #
#COLOR (hvit) ("XXX") darrcolor (hvit) ("xxxxxx") Darr #
#COLOR (hvit) ("XXX") farge (rød) 5color (hvit) ("xx") xxcolor (hvit) ("xx") 405 #
#COLOR (hvit) ("xxxxxxxxxxx") Darr #
#COLOR (hvit) ("xxxxxxxxx") "-----------" #
#COLOR (hvit) ("xxxxxxxx") darrcolor (hvit) ("xxxx") Darr #
#COLOR (hvit) ("xxxxxxxxx") farge (rød) 5color (hvit) ("x") xxcolor (hvit) ("x") 81 #
#COLOR (hvit) ("xxxxxxxxxxxxxx") Darr #
#COLOR (hvit) ("xxxxxxxxxxx") "--------------" #
#COLOR (hvit) ("xxxxxxxxxx") darrcolor (hvit) ("xxxxxx") Darr #
#COLOR (hvit) ("xxxxxxxxxxx") 9color (hvit) ("xx") xxcolor (hvit) ("xx") 9 #
#COLOR (hvit) ("xxxxxxxxxx") darrcolor (hvit) ("xxxxxx") Darr #
#COLOR (hvit) ("xxxxxxxxx") "------" farge (hvit) ("xxx.x") "------" #
#COLOR (hvit) ("xxxxxxxx") darrcolor (hvit) ("x") darrcolor (hvit) ("xxx") darrcolor (hvit) ("x") Darr #
#farve (hvit) ("XXxxxxXX") farge (rød) 3 xx farge (rød) 3 farger (hvit)
Så vi har # 2025 = farge (rød) 5 ^ 2xxcolor (rød) 3 ^ 2xxcolor (rød) 3 ^ 2 #
#COLOR (hvit) ("XXX") = (farge (rød) 5xxcolor (rød) 3xxcolor (rød) 3) ^ 2 #
#COLOR (hvit) ("XXX") = 45 ^ 2 #
Derfor
#COLOR (hvit) ("XXX") sqrt (2025) = sqrt ((45 ^ 2)) = 45 #