Bredden og lengden på et rektangel er påfølgende like heltall. Hvis bredden er redusert med 3 tommer. da er området av det resulterende rektangel 24 kvadrattommer. Hva er området for det opprinnelige rektangel?
48 "square inches" "la bredden" = n "deretter lengden" = n + 2 n "og" n + 2color (blå) "er påfølgende like heltall" "bredden reduseres med" 3 "tommer" rArr "bredde "n-3" -området "=" lengde "xx" bredde "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = Olarrcolor "i standard form" "faktorene til - 30 hvilken sum til - 1 er + 5 og - 6" rArr (n-6) (n + 5) = 0 "ekvate hver faktor til null og løse for n" n-6 = 0rArrn = 6 n + 5 = 0rArrn = -5 n> 0rArrn =
Opprinnelig var et rektangel dobbelt så lenge det var bredt. Når 4m ble tilsatt i lengden og 3m subtraheret fra bredden, hadde det resulterende rektangel et område på 600m ^ 2. Hvordan finner du dimensjonene til det nye rektangelet?
Original bredde = 18 meter Original lengde = 36 mtres Trikset med denne typen spørsmål er å gjøre en rask skisse. På den måten kan du se hva som skjer og utarbeide en løsningsmetode. Kjent: området er "bredde" xx "lengde" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Trekk 600 fra begge sider => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 Det er ikke logisk at en lengde er negativ i denne konteksten så w! = - 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~ Check (36 + 4) (18-3) = 40xx15 = 600 m ^ 2
Du vil kutte bokmerker som er 6 inches lange og 2 3/8 inches brede fra et ark med 8 dekorative papir som er 13 inches langt og 6 inches bredt. Hva er det maksimale antall bokmerker du kan klippe fra papiret?
Sammenlign de to lengdene mot papiret. Maksimalt mulig er fem (5) per ark. Ved å kutte de korte endene fra den korte enden, tillates bare 4 fulle bokmerker: 6 / (19/8) = 2,53 og 13/6 = 2,2 Hele bokmerker mulig = 2xx2 = 4 Kutting av de korte endene fra langkanten gjør også det lange bokmerket kanten nøyaktig lengden på aksjepapiret. 13 / (19/8) = 5,47; 6/6 = 1 Hele bokmerker mulig = 5xx1 = 5