Svar:
Forklaring:
# 3 + i = sqrt (10) (cos (alfa) + i sin (alfa)) # hvor#alpha = arctan (1/3) #
Så
#root (3) (3 + i) = roten (3) (sqrt (10)) (cos (alfa / 3) + i sin (alfa / 3)) #
# = rot (6) (10) (cos (1/3 arctan (1/3)) + i sin (1/3 arctan (1/3)))
# = rot (6) (10) cos (1/3 arctan (1/3)) + rot (6) (10) sin (1/3 arctan (1/3)) i #
Siden
De to andre kubusrøttene til
#omega (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
(1/3) + (2pi) / 3) + rot (6) (10) sin (1/3 arctan (1/3) + (2pi) / 3) jeg #
# omega ^ 2 (root (6) (10) cos (1/3 arctan (1/3)) + root (6) (10) sin (1/3 arctan (1/3)) i) #
(1/3) + (4pi) / 3) + rot (6) (10) sin (1/3 arctan (1/3) + (4pi) / 3) jeg #