Svar:
Forklaring:
La oss kalle vilkårene
Gitt det, vilkårene
Også gitt det,
Dermed har vi, alt sammen, den Seq.,
Av det som er gitt,
Lengre,
Bruker Quadr. Forml. å løse denne quadr. eqn., får vi,
Av disse er Seq.
Nyt matematikk.!
Tre påfølgende positive like heltall er slik at produktet det andre og tredje heltall er tjue mer enn ti ganger det første heltall. Hva er disse tallene?
La tallene være x, x + 2 og x + 4. Deretter (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 og -2 Siden problemet angir at heltallet må være positivt, har vi at tallene er 6, 8 og 10. Forhåpentligvis hjelper dette!
Tom skrev 3 påfølgende naturlige tall. Fra disse tallets kubusum tok han bort det tredoble produktet av disse tallene og delt med det aritmetiske gjennomsnittet av disse tallene. Hvilket nummer skrev Tom?
Endelig tall som Tom skrev var farge (rød) 9 Merk: mye av dette er avhengig av at jeg har riktig forståelse for meningen med ulike deler av spørsmålet. 3 sammenhengende naturlige tall Jeg antar at dette kan representeres av settet {(a-1), a, (a + 1)} for noen a i NN disse tallets kubesummen antar jeg at dette kan representeres som farge (hvit) "XXX") (a-1) ^ 3 + a ^ 3 + (a + 1) ^ 3 farge (hvit) ("XXXXX") = a ^ 3-3a ^ 2 + 3a-1 farge XXXXXx ") + a ^ 3 farge (hvit) (" XXXXXx ") ul (+ a ^ 3 + 3a ^ 2 + 3a + 1) farge (hvit) (" XXXXX ") = 3a ^ 3far ^ 2) + 6a trippel
Å vite formelen til summen av N-tallene a) Hva er summen av de første N sammenhengende firkantede heltall, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Summen av de første N sammenhengende kube-helhetene Sigma_ (k = 1) ^ N k ^ 3?
For S_k (n) = sum_ {i = 0} ^ ni ^ S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Vi har sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 løsning for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni men sum_ {i = 0} ^ ni = ((n + 1) n) / 2 så sum_ {i = 0} ^ ni ^ 2 = +1) ^ 3 / 3- (n + 1) /