Hvordan skiller du f (x) = tan (e ^ ((lnx-2) ^ 2)) ved hjelp av kjederegelen.?

Hvordan skiller du f (x) = tan (e ^ ((lnx-2) ^ 2)) ved hjelp av kjederegelen.?
Anonim

Svar:

# (2sec ^ 2 (e ^ ((ln (x) -2) ^ 2)) e ^ ((ln (x) -2) ^ 2 (lnx-2)) / x)

Forklaring:

# d / dx (tan (e ^ ((ln (x) -2) ^))) = sec ^ 2 (e ^ ((ln (x) -2) ^ 2)) d / dx ^ ((ln (x) -2) ^ 2)) #

=# sec ^ 2 (e ^ (ln (x) -2) ^ 2)) e ^ (((ln (x) -2)) 2) * d / dx (ln (x) -2) ^ 2 #

=(ln (x) -2)) 2) 2 (lnx-2) * d / dx (lnx-2)) #

=# (sec ^ 2 (e ^ ((ln (x) -2) ^ 2)) e ^ (((ln (x) -2)) ^ 2 (lnx-2) * 1 / x)

=# (2sec ^ 2 (e ^ ((ln (x) -2) ^ 2)) e ^ ((ln (x) -2) ^ 2 (lnx-2)) / x)