Trekant A har et areal på 24 og to sider med lengder 12 og 6. Trekant B er lik trekant A og har en side av lengde 9. Hva er de maksimale og minste mulige områdene av trekanten B?

Trekant A har et areal på 24 og to sider med lengder 12 og 6. Trekant B er lik trekant A og har en side av lengde 9. Hva er de maksimale og minste mulige områdene av trekanten B?
Anonim

Svar:

Maksimalt mulig trekant B = 54

Minimum mulig område av trekant B = 13.5

Forklaring:

#Delta s A og B # er like.

For å få maksimalt område på # Del B #, side 9 av # Del B # skal svare til side 6 av # Del A #.

Sidene er i forholdet 9: 6

Dermed vil områdene være i forholdet mellom #9^2: 6^2 = 81: 36#

Maksimalt område av trekant #B = (24 * 81) / 36 = 54 #

På samme måte som å få det minste området, side 12 av # Del A # vil svare til side 9 av # Del B #.

Sidene er i forholdet # 9: 12# og områder #81: 144#

Minimumsareal av # Del B = (24 * 81) / 144 = 13,5 #