Svar:
Forklaring:
Røttene til den kvadratiske ligningen 2x ^ 2-4x + 5 = 0 er alfa (a) og beta (b). (a) Vis at 2a ^ 3 = 3a-10 (b) Finn den kvadratiske ligningen med røttene 2a / b og 2b / a?
Se nedenfor. Finn først røttene til: 2x ^ 2-4x + 5 = 0 Bruk kvadratisk formel: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -sqrt (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) 3 = 3 ((2 + isqrt (6)) / 2 ) (2 + isqrt (6)) / 2) ^ 3 = (2 + 2) * (- 28 + 6isqrt (6)) / 8 farge (blå) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2farger (blå) (= (- 14 + 3isqrt (6)) / 2) b) 2 * a / b = isqrt (6)) / 2) / ((2-isqrt (6)) / 2) = (2 + isqr
To båter forlater en port samtidig, en går nordover, den andre reiser sør. Den nordgående båten reiser 18 mph raskere enn den sørgående båten. Hvis den sørgående båten reiser på 52 km / t, hvor lenge vil det være før de er 1586 miles fra hverandre?
Southbound båthastighet er 52mph. Nordbåt båtfart er 52 + 18 = 70mph. Siden avstanden er hastighet x tid la tiden = t Så: 52t + 70t = 1586 løse for t 122t = 1586 => t = 13 t = 13 timer Sjekk: Southbound (13) (52) = 676 Northbound (13) (70) = 910 676 + 910 = 1586
Hva er progresjonen av antall spørsmål for å nå et annet nivå? Det ser ut til at antall spørsmål går opp raskt som nivået øker. Hvor mange spørsmål for nivå 1? Hvor mange spørsmål for nivå 2 Hvor mange spørsmål for nivå 3 ......
Vel, hvis du ser på FAQ, finner du at trenden for de første 10 nivåene er gitt: Jeg antar at hvis du virkelig vil forutsi høyere nivåer, passer jeg antall karma poeng i et emne til det nivået du nådde , og fikk: hvor x er nivået i et gitt emne. På samme side, hvis vi antar at du bare skriver svar, så får du bb (+50) karma for hvert svar du skriver. Nå, hvis vi regraferer dette som antall svar skrevet mot nivået, så: Husk at dette er empiriske data, så jeg sier ikke dette er faktisk hvordan det er. Men jeg synes det er en god tilnærming. Videre