Høyden til en trekant øker med en hastighet på 1,5 cm / min mens trekantens område øker med en hastighet på 5 cm / min. I hvilken grad er bunnen av trekanten endret når høyden er 9 cm og arealet er 81 kvadrat cm?
Dette er en relatert type (av endring) type problem. Berørte variablene er a = høyde A = området, og siden området av en trekant er A = 1 / 2ba, trenger vi b = base. Gitte endringshastigheter er i enheter per minutt, så den (usynlige) uavhengige variabelen er t = tid i minutter. Vi blir gitt: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi blir bedt om å finne (db) / dt når a = 9 cm og A = 81cm "" 2 A = 1 / 2ba, differensiering med t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi trenger produktregelen til høyre. (dA) / dt = 1/2 (db) / dt a + 1 / 2b
Arealet av en trekant er 16 mer enn basen. Hvis høyden er 6, hva er lengden på basen?
Lengden på basen er 8 La baselengden være "" B La området være "" A La høyden være "" H = 6 Kjent: A = 1 / 2BxxH Men "" A = 16 + B "og" H " = 6 => 16 + B = 1 / 2Bxx6 16 + B = 3B 2B = 16B = 8
Basen av en trekant av et gitt område varierer omvendt som høyden. En trekant har en base på 18cm og en høyde på 10cm. Hvordan finner du høyden på en trekant med like område og med en base på 15cm?
Høyde = 12 cm Arealet av en trekant kan bestemmes med ligningsområdet = 1/2 * base * høyde Finn området for den første trekant ved å erstatte målingene av trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 La høyden av den andre triangelen = x. Så området ligningen for den andre trekanten = 1/2 * 15 * x Siden områdene er like, 90 = 1/2 * 15 * x ganger begge sider ved 2. 180 = 15x x = 12