Hva er den lokale ekstremiteten av f (x) = x ^ 3 - 3x ^ 2 - 9x +1?

Hva er den lokale ekstremiteten av f (x) = x ^ 3 - 3x ^ 2 - 9x +1?
Anonim

Svar:

relativ maksimum: #(-1, 6)#

relativ minimum: #(3, -26)#

Forklaring:

gitt: #f (x) = x ^ 3 - 3x ^ 2 - 9x + 1 #

Finn de kritiske tallene ved å finne det første derivatet og sette det lik null:

#f '(x) = 3x ^ 2 -6x - 9 = 0 #

Factor: # (3x + 3) (x -3) = 0 #

Kritiske tall: #x = -1, "" x = 3 #

Bruk den andre avledetesten for å finne ut om disse kritiske tallene er relative maksimum eller relative minimum:

#f '' (x) = 6x - 6 #

#f '' (- 1) = -12 <0 => "relativ maks ved" x = -1 #

#f '' (3) = 12> 0 => "relativ min på" x = 3 #

#f (-1) = (-1) ^ 3 - 3 (-1) ^ 2 - 9 (-1) + 1 = 6 #

#f (3) = 3 ^ 3 - 3 (3) ^ 2 - 9 (3) + 1 = -26 #

relativ maksimum: #(-1, 6)#

relativ minimum: #(3, -26)#