Svar:
Jeg prøvde dette:
Forklaring:
Ring de to påfølgende ulige heltallene:
og
vi har:
La oss bruke den Qratratic Formula for å få
Så Våre tall kan enten være:
og
eller:
og
Produktet av to påfølgende ulige heltall er 29 mindre enn 8 ganger summen deres. Finn de to heltallene. Svar i form av parrede punkter med det laveste av de to heltallene først?
(13, 15) eller (1, 3) La x og x + 2 være merkelige sammenhengende tall, så Som i spørsmålet har vi (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2-x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 eller 1 Nå, tilfelle I: x = 13:. x + 2 = 13 + 2 = 15:. Tallene er (13, 15). SAK II: x = 1:. x + 2 = 1 + 2 = 3:. Tallene er (1, 3). Derfor, som det er to tilfeller dannet her; paret kan være både (13, 15) eller (1, 3).
Summen av fire påfølgende ulige heltall er tre mer enn 5 ganger minst av heltallene, hva er heltallene?
N -> {9,11,13,15} farge (blå) ("Bygg likningene") La det første merkelige uttrykket være n La summen av alle betingelsene være s Da blir termen 1-> n termen 2-> n +2 term 3-> n + 4 term 4-> n + 6 deretter s = 4n + 12 ............................ ..... (1) Gitt at s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Equating (1) to (2) variabel s 4n + 12 = s = 3 + 5n Samle lignende vilkår 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ Begrepet er således: term 1-> n-> 9 term 2-> n + 2-> 11 term 3-> n + 4-> 13 term
Tre ganger større av to påfølgende ulige heltall er fem mindre enn fire ganger mindre. Hva er de to tallene?
De to tallene er 11 og 13. La de to påfølgende ulige heltallene være x og (x + 2). Så x er mindre og x + 2 er større. Gitt at: 3 (x + 2) = 4x - 5 3x + 6 = 4x - 5 3x-4x = -5 -6 -x = -11 x = 11 og x + 2 = 11 +2 = 13 Derfor De to tallene er 11 og 13