Produktet av to påfølgende ulige heltall er 1 mindre enn fire ganger summen. Hva er de to heltallene?

Produktet av to påfølgende ulige heltall er 1 mindre enn fire ganger summen. Hva er de to heltallene?
Anonim

Svar:

Jeg prøvde dette:

Forklaring:

Ring de to påfølgende ulige heltallene:

# 2n + 1 #

og

# 2n + 3 #

vi har:

# (2n + 1) (2n + 3) = 4 (2n + 1) + (2n + 3) - 1 #

# 4n ^ 2 + 6 n + 2 n + 3 = 4 (4n + 4) -1 #

# 4n ^ 2-8n-12 = 0 #

La oss bruke den Qratratic Formula for å få # N #:

#n_ (1,2) = (8 + -sqrt (64 + 192)) / 8 = (8 + -16) / 8 #

# N_1 = 3 #

# N_2 = -1 #

Så Våre tall kan enten være:

# 2n_1 + 1 = 7 #

og

# 2n_1 + 3 = 9 #

eller:

# 2n_2 + 1 = -1 #

og

# 2n_2 + 3 = 1 #