Hvordan beviser du (cotx + cscx / sinx + tanx) = (cotx) (cscx)?

Hvordan beviser du (cotx + cscx / sinx + tanx) = (cotx) (cscx)?
Anonim

Svar:

Verifisert nedenfor

Forklaring:

# (cotx + cscx) / (sinx + tanx) = (cotx) (cscx) #

# (cosx / sinx + 1 / sinx) / (sinx + sinx / cosx) = (cotx) (cscx) #

# ((cosx + 1) / sinx) / ((sinxcosx) / cosx + sinx / cosx) = (cotx) (cscx) #

# ((cosx + 1) / sinx) / ((sinx (cosx + 1)) / cosx) = (cotx) (cscx) #

# (avbryt (cosx + 1) / sinx) * (cosx / (sinxcancel ((cosx + 1)))) = (cotx) (cscx) #

# (cosx / sinx * 1 / sinx) = (cotx) (cscx) #

# (cotx) (cscx) = (cotx) (cscx) #

Vi prøver å bevise det # (Cotx + cscx) / (sinx + tanx) = cotxcscx #. Her er identitetene du trenger:

# Tanx = sinx / cosx #

# Cotx = cosx / sinx #

# Cscx = 1 / sinx #

Jeg begynner med venstre side og manipulerer den til den er lik høyre side:

#COLOR (hvit) = (cotx + cscx) / (sinx + tanx) #

# = (Qquadcosx / sinx + 1 / sinxqquad) / (qquadsinx / 1 + sinx / cosxqquad) #

# = (qquad (cosx + 1) / sinxqquad) / (qquad (sinxcosx) / cosx + sinx / cosxqquad) #

# = (qquad (cosx + 1) / sinxqquad) / (qquad (sinxcosx + sinx) / cosxqquad) #

# = (Cosx + 1) / sinx * cosx / (sinxcosx + sinx) #

# = (Cosx + 1) / sinx * cosx / (sinx (cosx + 1)) #

# = (Cosx (cosx + 1)) / (sin ^ 2x (cosx + 1)) #

# = (Cosxcolor (rød) cancelcolor (svart) ((cosx + 1))) / (sin ^ 2xcolor (rød) cancelcolor (svart) ((cosx + 1))) #

# = Cosx / sin ^ 2x #

# = Cosx / sinx * 1 / sinx #

# = Cotx * cscx #

# = RHS #

Det er beviset. Håper dette hjalp!

# LHS = (cotx + cscx) / (sinx + tanx) #

# = (Cotx + cscx) / (sinx + tanx) * ((cotx * cscx) / (cotx * cscx)) #

# = Cotx * cscx (cotx + cscx) / ((sinx + tanx) * cotx * cscx) #

# = Cotx * cscx (cotx + cscx) / ((sinx * cscx * cotx + tanx * cotx * cscx)) #

# = Cotx * cscxcancel ((cotx + cscx) / (cotx + cscx)) = cotx * cscx = RHS #