Linjene gjør noen vinkler ved opprinnelsen der de møtes. Her ser vi tangenten til den første er 2400 (nesten vertikal) og tangenten til den andre er
som tilsvarer en teeny vinkel rundt
Ups, det er trig, ikke algebra
Ekvasjonen x ^ 2 + y ^ 2 = 25 definerer en sirkel ved opprinnelsen og radiusen av 5. Linjen y = x + 1 går gjennom sirkelen. Hva er punktet / punktene hvor linjen krysser sirkelen?
Det er to punkter av intrerseksjon: A = (- 4; -3) og B = (3; 4) For å finne ut om det er noen skjæringspunkt, må du løse system av ligninger, inkludert sirkel- og linjeekvasjoner: {(x ^ 2 + y ^ 2 = 25), (y = x + 1):} Hvis du erstatter x + 1 for y i første ligning får du: x ^ 2 + (x + 1) ^ 2 = 25 x ^ 2 + x ^ 2 + 2x + 1 = 25 2x ^ 2 + 2x-24 = 0 Du kan nå dele begge sider med 2 x ^ 2 + x-12 = 0 Delta = 1 ^ 2-4 * 1 * (- 12) Delta = 1 + 48 = 49 sqrt (Delta) = 7 x_1 = (- 1-7) / 2 = -4 x_2 = (- 1 + 7) / 2 = 3 Nå må vi erstatte beregnede verdier av x for å finne tilsvarende verdier
Hva skjer hvis en A-person får B-blod? Hva skjer hvis en AB-type person får B-blod? Hva skjer hvis en B-type person mottar O-blod? Hva skjer hvis en B-type person mottar AB blod?
For å starte med typene og hva de kan akseptere: Et blod kan akseptere A eller O blod Ikke B eller AB blod. B blod kan akseptere B eller O blod Ikke A eller AB blod. AB blod er en universell blodtype som betyr at den kan akseptere enhver type blod, det er en universell mottaker. Det finnes O-type blod som kan brukes med hvilken som helst blodtype, men den er litt vanskeligere enn AB-typen, da den kan bli gitt bedre enn mottatt. Hvis blodtyper som ikke kan blandes, blandes av en eller annen grunn, vil blodcellene av hver type klumpe sammen inne i blodkarene, slik at blodet i blodet ikke er i orden. Dette kan også
Bevis følgende utsagn. La ABC være en hvilken som helst riktig trekant, den rette vinkelen ved punkt C. Høyden trukket fra C til hypotenuse deler trekantene i to rette trekanter som ligner hverandre og til den opprinnelige triangelen?
Se nedenfor. Ifølge spørsmålet er DeltaABC en riktig trekant med / _C = 90 ^ @, og CD er høyden til hypotenuse AB. Bevis: La oss anta at / _ABC = x ^ @. Så, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Nå, CD vinkelrett AB. Så, angleBDC = angleADC = 90 ^ @. I DeltaCBD, vinkelBCD = 180 ^ @ - vinkelBDC - vinkelCBD = 180 ^ @ 90 ^ @ - x ^ @ = (90x) ^ @ Tilsvarende vinkelenACD = x ^ @. Nå, i DeltaBCD og DeltaACD, vinkle CBD = vinkel ACD og vinkel BDC = angleADC. Så, etter AA-kriterier for likhet, DeltaBCD ~ = DeltaACD. På samme måte kan vi finne DeltaBCD ~ = DeltaABC. Fra det,