To påfølgende til og med heltall kan bli representert som
(som forskjellen mellom to like heltall, for eksempel: 8 - 6 = 2)
Jo større av de to =
Tre ganger mindre heltal =
i henhold til tilstanden til spørsmålet:
nå løser ligningen:
og
så tallene er
Tre påfølgende positive like heltall er slik at produktet det andre og tredje heltall er tjue mer enn ti ganger det første heltall. Hva er disse tallene?
La tallene være x, x + 2 og x + 4. Deretter (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 og -2 Siden problemet angir at heltallet må være positivt, har vi at tallene er 6, 8 og 10. Forhåpentligvis hjelper dette!
Tre ganger større av to påfølgende ulige heltall er fem mindre enn fire ganger mindre. Hva er de to tallene?
De to tallene er 11 og 13. La de to påfølgende ulige heltallene være x og (x + 2). Så x er mindre og x + 2 er større. Gitt at: 3 (x + 2) = 4x - 5 3x + 6 = 4x - 5 3x-4x = -5 -6 -x = -11 x = 11 og x + 2 = 11 +2 = 13 Derfor De to tallene er 11 og 13
Hva er to påfølgende like heltall slik at summen deres er like forskjell på tre ganger større og to ganger mindre?
4 og 6 La x = det minste av de sammenhengende like heltallene. Det betyr at den største av de to påfølgende like heltallene er x + 2 (fordi like tall er 2 verdier fra hverandre). Summen av disse to tallene er x + x + 2. Forskjellen på tre ganger større og to ganger mindre er 3 (x + 2) -2 (x). Angi de to uttrykkene lik hverandre: x + x + 2 = 3 (x + 2) -2 (x) Forenkle og løse: 2x + 2 = 3x + 6-2x 2x + 2 = x + 6 x = 4 Så jo mindre heltall er 4 og jo større er 6.