
Svar:
Den generelle løsningen er:
# phi = Ae ^ (- (8pi ^ 2mE) / h ^ 2x) #
Vi kan ikke fortsette videre som
Forklaring:
Vi har:
# (dphi) / dx + k phi = 0 #
Dette er en ODE for første ordre, slik at vi kan skrive:
# (dphi) / dx = - k phi #
# 1 / phi (dphi) / dx = - k #
Nå skiller vi variablene for å få
# int 1 / phi d phi = - int k dx #
Som består av standard integraler, slik at vi kan integrere:
# ln | phi | = -kx + lnA #
#:. | Phi | = Ae ^ (- kx) #
Vi merker at eksponentiell er positiv over hele domenet, og vi har også skrevet
# phi = Ae ^ (- kx) #
# = Ae ^ (- (8pi ^ 2mE) / h ^ 2x) #
Vi kan ikke fortsette videre som