Svar:
Forklaring:
Definisjonen av en parabola sier at alle punkter på parabolen alltid har samme avstand til fokuset og direktoren.
Vi kan la
Vi kan nå sette opp en ligning med disse punktene. Vi vil bruke avstandsformelen til å trene avstandene:
Vi kan bruke dette til våre poeng for å først få avstanden mellom
Da skal vi trene avstanden mellom
Siden disse avstandene må være lik hverandre, kan vi sette dem i en ligning:
Siden punktet
Først skal vi firkantet begge sider:
Vi kan da utvide:
Hvis vi legger alt til venstre og samler som vilkår, får vi:
som er ligningen til vår parabol.
Hva er ligningen i standardform for parabolen med fokus på (-10,8) og en regi av y = 9?
Parabolenes ligning er (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Ethvert punkt (x, y) på parabolen er like langt fra fokuset F = (- 10,8 ) og direktoren y = 9 Derfor er sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) graf {(x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31.08, 20.25, -9.12, 16.54]}
Hva er ligningen i standardform for parabolen med fokus på (10, -9) og en regi av y = -14?
Y = x ^ 2 / 10-2x-3/2 fra det angitte fokuset (10, -9) og ligningen til directrix y = -14, beregne pp = 1/2 (-9-14) = 5/2 beregne toppunktet (h, k) h = 10 og k = (- 9 + (- 14)) / 2 = -23 / 2 Vertex (h, k) = (10, -23/2) Bruk verteksformen ) ^ 2 = + 4p (yk) positiv 4p fordi den åpner oppover (x-10) ^ 2 = 4 * (5/2) (y - 23/2) (x-10) ^ 2 = 10 (y + 23/2) x ^ 2-20x + 100 = 10y + 115 x ^ 2-20x-15 = 10y y = x ^ 2 / 10-2x-3/2 grafen av y = x ^ 2 / 10-2x- 3/2 og direktoren y = -14 graden {(yx ^ 2/10 + 2x + 3/2) (y + 14) = 0 [-35,35, -25,10]}
Hva er ligningen i standardform for parabolen med fokus på (-10, -9) og en regi av y = -4?
Parabolenes ligning er y = -1/10 (x + 10) ^ 2 -6.5 Fokuset er ved (-10, -9) Directrix: y = -4. Vertex er midtpunkt mellom fokus og directrix. Så vertex er på (-10, (-9-4) / 2) eller (-10, -6.5) og parabolen åpner nedover (a = -iv) Parabolenes ligning er y = a (xh) ^ 2 = k eller y = a (x - (- 10)) ^ 2+ (-6,5) eller y = a (x + 10) ^ 2 -6,5 hvor (h, k) er vertex. Avstanden mellom vertex og directrix, d = 6.5-4.0 = 2.5 = 1 / (4 | a |):. a = -1 / (4 * 2,5) = -1/10 Derfor er parabolas ligning y = -1/10 (x + 10) ^ 2 -6,5 grader {-1/10 (x + 10) ^ 2 - 6.5 [-40, 40, -20, 20]} [Ans]