Svar:
Ligningen er
Forklaring:
La m = lutningen på linjen =
Ved hjelp av skrå-avskjæringsformen,
Graden av linjen som forbinder punktene (2, 1) og (6, a) er 3/2. Finn verdien av a?
Se en løsningsprosess under: Helling eller gradient finner du ved å bruke formelen: m = (farge (rød) (y_2) - farge (blå) (y_1)) / (farge (rød) (x_2) - farge ) (x_1)) Hvor m er skråningen og (farge (blå) (x_1, y_1)) og (farge (rød) (x_2, y_2)) er de to punktene på linjen. Bytting av verdiene for m og poengene i problemet gir: 3/2 = (farge (rød) (a) - farge (blå) (1)) / (farge (rød) (6) - farge (blå) )) Vi kan nå løse for a: 3/2 = (farge (rød) (a) - farge (blå) (1)) / 4 farger (oransje) (4) xx 3/2 = farge (oransje) ) xx (farge (rød) (a)
Hva er hellingen til linjen som forbinder punktene (10, 5) og (20, 25)?
Hellingen er 2. Hvordan bestemme dette er vist nedenfor. For å finne skråningen er det tre trinn Finn forskjellen mellom de to y-verdiene. 25-5 = 20 Dette kalles vanligvis "stigning" av linjen. Finn forskjellen mellom de to x-verdiene. 20-10 = 10 Dette kalles vanligvis "løp" av linjen. Det spiller ingen rolle hva koordinater du plasserer først når du gjør subtraksjonene. De fleste ville sette koordinaten til det andre punktet først, deretter trekke koordinaten til det første punktet. Bare vær sikker på å være konsekvent i ditt valg. Del oppgang
Hva er ligningen av linjen som forbinder punktene (-5, -7) og (-3, -3)?
2x-y = -3 Begynner med skråningstype: farge (hvit) ("XXX") (y-bary) = m (x-barx) for en linje gjennom (barx, bary) med en skråning på m Bruke (x_1, y_1) = (- 5, -7) og (x_2, y_2) = (-3, -3) vi kan bestemme bakken som farge (hvit) ("XXX") m = (y_2-y_1) / (x - x -) = (-3 - (- 7)) / (- 3 - (- 5)) = 4/2 = 2 og velge (-3, -3) som utgangsstrek (barx, bary) farge hvit) (XXX) y + 3 = 2 (x + 3) Selv om dette er et perfekt korrekt svar, Vi vil normalt konvertere dette til standardform: Aks + By = C (med A> = 0) farge (hvit) (XXX) y + 3 = 2x + 6 farge (hvit) (XXX) 2x-y = -3