Summen av tallene i et tosifret tall er 10. Hvis tallene reverseres, dannes et nytt tall. Det nye nummeret er ett mindre enn dobbelt så stort som det opprinnelige nummeret. Hvordan finner du det opprinnelige nummeret?
Originaltall var 37 La m og n være henholdsvis de første og andre sifrene i det opprinnelige nummeret. Vi blir fortalt at: m + n = 10 -> n = 10-m [A] Nå. For å danne det nye nummeret må vi vende om tallene. Siden vi kan anta begge tallene å være desimalt, er verdien av det opprinnelige nummeret 10xxm + n [B] og det nye nummeret er: 10xxn + m [C] Vi blir også fortalt at det nye nummeret er to ganger det opprinnelige tallet minus 1 Kombinerer [B] og [C] -> 10n + m = 2 (10m + n) -1 [D] Erstatter [A] i [D] -> 10 (10-m) + m = 20m +2 -m) -1 100-10m + m = 20m + 20-2m-1 100-9m = 18m
Summen av tre tall er 137. Det andre tallet er fire mer enn, to ganger det første nummeret. Det tredje nummeret er fem mindre enn tre ganger det første nummeret. Hvordan finner du de tre tallene?
Tallene er 23, 50 og 64. Begynn med å skrive et uttrykk for hvert av de tre tallene. De er alle dannet fra det første nummeret, så la oss ringe det første tallet x. La det første tallet være x Det andre nummeret er 2x +4 Det tredje nummeret er 3x -5 Vi får beskjed om at summen er 137. Dette betyr at når vi legger til dem alle sammen, blir svaret 137. Skriv en ligning. (x) + (2x + 4) + (3x - 5) = 137 Brakettene er ikke nødvendige, de er inkludert for klarhet. 6x -1 = 137 6x = 138 x = 23 Så snart vi kjenner det første nummeret, kan vi trene de andre to fra uttrykkene vi
Tiene siffer i et tosifret tall overstiger to ganger enhetene siffer med 1. Hvis tallene er reversert, er summen av det nye nummeret og det opprinnelige nummeret 143.Hva er det opprinnelige nummeret?
Det opprinnelige nummeret er 94. Hvis et tosifret heltall har en i tiene tall og b i enhetssifferet, er tallet 10a + b. La x være enhedssifret av det opprinnelige nummeret. Deretter er tiene siffer 2x + 1, og tallet er 10 (2x + 1) + x = 21x + 10. Hvis tallene er omvendt, er tallsifret x og enhedssiffer er 2x + 1. Det omvendte tallet er 10x + 2x + 1 = 12x + 1. Derfor er (21x + 10) + (12x + 1) = 143 33x + 11 = 143 33x = 132 x = 4 Det opprinnelige tallet er 21 * 4 + 10 = 94.