Svar:
Helheter, hele tall, telling / naturlige tall
Forklaring:
Helheter kan være negative eller positive. De kan ikke være desimaler / fraksjoner / prosenter.
Eksempler på heltall:
Hele tallene inkluderer 0, men de kan ikke være negative. De kan ikke være desimaler / fraksjoner / prosenter.
Eksempler på hele tall:
Teller / naturlige tall er ordren der vi teller. De er positive hele tall, men inkluderer ikke null (vi teller ikke ved å si 0, 1, 2, 3, etc.).
Eksempler på telling / naturlige tall:
Eieren av en stereoforretning ønsker å annonsere at han har mange forskjellige lydsystemer på lager. Butikken har 7 forskjellige CD-spillere, 8 forskjellige mottakere og 10 forskjellige høyttalere. Hvor mange forskjellige lydsystemer kan eieren annonsere?
Eieren kan annonsere totalt 560 forskjellige lydsystemer! Måten å tenke på dette er at hver kombinasjon ser slik ut: 1 Høyttaler (system), 1 mottaker, 1 CD-spiller Hvis vi bare hadde 1 alternativ for høyttalere og CD-spillere, men vi har fortsatt 8 forskjellige mottakere, ville det være 8 kombinasjoner. Hvis vi bare fikser høyttalerne (utelukkende at det bare er ett høyttalersystem tilgjengelig), så kan vi jobbe derfra: S, R_1, C_1S, R_1, C_2S, R_1, C_3 ... S, R_1, C_8 S , R_2, C_1 ... S, R_7, C_8 Jeg skal ikke skrive hver kombinasjon, men poenget er at selv om antall høytt
Summen av to rasjonelle tall er -1/2. Forskjellen er -11/10. Hva er de rasjonelle tallene?
De nødvendige rasjonelle tallene er -4/5 og 3/10. Betegner de to rasjonale tallene med x og y. Fra informasjonen gitt x + y = -1/2 (ligning 1) og x - y = -11/10 (x Ligning 2) Dette er bare samtidige likninger med to likninger og to ukjente som skal løses ved hjelp av en egnet metode. Bruke en slik metode: Legge til ligning 1 til ligning 2 gir 2x = - 32/20 som innebærer x = -4/5 som erstatter i ligning 1 gir -4/5 + y = -1/2 som betyr y = 3/10 Kontroller i ligning 2 -4/5 - 3/10 = -11/10, som forventet
Hvilket realtallsubsett tilhører følgende ekte tall: 1/4, 2/9, 7,5, 10,2? heltall naturlige tall irrasjonelle tall rasjonelle tall tahaankkksss! <3?
Alle de identifiserte tallene er rasjonelle; De kan uttrykkes som en brøkdel som involverer (bare) 2 heltall, men de kan ikke uttrykkes som enkelt heltall