Svar:
Forklaring:
Hvis ett sluttpunkt
Hvordan bruke midpoint formel for å finne et sluttpunkt?
Her,
og
Så,
Endepunktene til linjesegmentet PQ er A (1,3) og Q (7, 7). Hva er midtpunktet for linjesegmentet PQ?
Endringen i koordinater fra en ende til midtpunktet er halvparten av endringen i koordinater fra den ene til den andre enden. For å gå fra P til Q øker x-koordinaten med 6 og y-koordinaten med 4. For å gå fra P til midtpunktet øker x-koordinaten med 3 og y-koordinatet øker med 2; dette er poenget (4, 5)
Midtpunktet til segment AB er (1, 4). Koordinatene til punkt A er (2, -3). Hvordan finner du koordinatene til punkt B?
Koordinatene til punkt B er (0,11) Midtpunkt for et segment, hvis to sluttpunkter er A (x_1, y_1) og B (x_2, y_2) er ((x_1 + x_2) / 2, (y_1 + y_2) / 2) som A (x_1, y_1) er (2, -3), vi har x_1 = 2 og y_1 = -3 og et midtpunkt er (1,4), vi har (2 + x_2) / 2 = 1 dvs. 2 + x_2 = 2 eller x_2 = 0 (-3 + y_2) / 2 = 4 dvs. -3 + y_2 = 8 eller y_2 = 8 + 3 = 11 Derfor er koordinatene til punkt B (0,11)
Et linjesegment har endepunkter ved (a, b) og (c, d). Linjesegmentet er utvidet med en faktor r rundt (p, q). Hva er de nye endepunktene og lengden på linjesegmentet?
(1-r) q + rb), (c, d) til ((1-r) p + rc, (1-r) q + rd), Ny lengde l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Jeg har en teori alle disse spørsmålene er her, så det er noe for nybegynnere å gjøre. Jeg skal gjøre det generelle tilfellet her og se hva som skjer. Vi oversetter flyet slik at utvidelsespunktet P-kortene til opprinnelsen. Deretter skaler dilatasjonen koordinatene med en faktor på r. Da oversetter vi flyet tilbake: A '= r (A - P) + P = (1-r) P + r A Det er den parametriske ligningen for en linje mellom P og A, med r = 0 som gir P, r = 1 gir A, og r = r gir A ', bildet av A under d