Svar:
Den nye sentroid er på
Forklaring:
Den gamle sentroid er på
Den gamle sentroid er på
Siden vi reflekterer trekanten over x-aksen, vil abscissen til centroid ikke endres. Bare ordinatet vil endres. Så den nye sentroid vil være på
Gud velsigne … Jeg håper forklaringen er nyttig.
Jorges nåværende timelønn for å jobbe hos Denti Smiles er $ 12,00. Jorge ble fortalt at i begynnelsen av neste måned vil hans nye timelønn være en økning på 6% av sin nåværende timelønn. Hva blir Jorges nye timelønn?
Jeorges nye timelønn vil bli 12,72 dollar. Jeorges nye timelønn vil være 12 + 6/100 * 12 = 12 + .72 = $ 12,72 [Ans]
En trekant er både likegyldig og akutt. Hvis en vinkel på trekanten måler 36 grader, hva er målet for den største vinkelen (e) av trekanten? Hva er mål for den minste vinkelen (e) av trekanten?
Svaret på dette spørsmålet er enkelt, men krever litt matematisk generell kunnskap og sunn fornuft. Isosceles Triangle: - En trekant hvis kun to sider er lik, kalles en ensidig trekant. En likemessig trekant har også to like engler. Akutt trekant: - En trekant hvis alle engler er større enn 0 ^ @ og mindre enn 90 ^ @, dvs. alle engler er akutte kalles en akutt trekant. Gitt trekant har en vinkel på 36 ^ @ og er både usammen og akutt. innebærer at denne trekanten har to like engler. Nå er det to muligheter for englene. (i) Den kjente engelen 36 ^ er lik og den tredje engelen er u
En trekant har hjørner ved (-6, 3), (3, -2) og (5, 4). Hvis trekanten er dilatert med en faktor på 5 om punkt # (- 2, 6), hvor langt vil dens sentroid bevege seg?
Centroid vil bevege seg rundt d = 4 / 3sqrt233 = 20.35245 enheter "" Vi har en trekant med hjørner eller hjørner ved punktene A (-6, 3) og B (3, -2) og C (5, 4). La F (x_f, y_f) = F (-2, 6) "" fastpunktet Beregn sentroid O (x_g, y_g) av denne trekanten, vi har x_g = (x_a + x_b + x_c) / 3 = (- 6 + 3 + 5) / 3 = 2/3 y_g = (y_a + y_b + y_c) / 3 = (3 + (- 2) +4) / 3 = 5/3 Centroid O (x_g, y_g) = O / 3, 5/3) Beregn sentroid av den større trekanten (skalafaktor = 5) La O '(x_g', y_g ') = midtpunktet for den større triangelen arbeidslikningen: (FO') / (FO) = 5 løse for x