Svar:
Forklaring:
Jeg skal gi det første heltallet variabelen
Basert på den oppgitte informasjonen er disse de følgende ligningene:
Jeg kommer til å omorganisere den andre ligningen og erstatte den til den første:
Nå erstattet:
Nå erstatte det inn i en annen ligning for å løse for
Summen av to heltall er 2, og deres forskjell er 6, hva er heltallene?
4, -2 x + y = 2 x-y = 6 legg til ligningene sammen 2x = 8 x = 4 hvis x = 4, y = -2
Ett heltall er 15 mer enn 3/4 av et annet heltall. Summen av heltalene er større enn 49. Hvordan finner du minstverdiene for disse to heltallene?
De 2 heltallene er 20 og 30. La x være et heltall Da er 3 / 4x + 15 det andre heltallet Siden summen av heltallene er større enn 49, x + 3 / 4x + 15> 49 x + 3 / 4x> 49 -15 7 / 4x> 34 x> 34times4 / 7 x> 19 3/7 Derfor er det minste tallet 20 og det andre heltallet er 20times3 / 4 + 15 = 15 + 15 = 30.
Ett heltall er ni mer enn to ganger et heltall. Hvis produktet av heltallene er 18, hvordan finner du de to heltallene?
Løsninger heltall: farge (blå) (- 3, -6) La heltalene bli representert av a og b. Vi blir fortalt: [1] farge (hvit) ("XXX") a = 2b + 9 (Ett heltall er ni mer enn to ganger det andre heltallet) og [2] farge (hvit) ("XXX") a xx b = 18 (Produktet av heltalene er 18) Basert på [1], vet vi at vi kan erstatte (2b + 9) for en i [2]; gir [3] farge (hvit) ("XXX") (2b + 9) xx b = 18 Forenkling med målet om å skrive dette som standardformular kvadratisk: [5] farge (hvit) ("XXX") 2b ^ 2 + 9b = 18 [6] farge (hvit) ("XXX") 2b ^ 2 + 9b-18 = 0 Du kan bruke kvadrati