Svar:
De 2 heltallene er 20 og 30.
Forklaring:
La x være et heltall
Deretter
Siden summen av heltalene er større enn 49,
Derfor er det minste heltallet
Ett heltall er ni mer enn to ganger et heltall. Hvis produktet av heltallene er 18, hvordan finner du de to heltallene?
Løsninger heltall: farge (blå) (- 3, -6) La heltalene bli representert av a og b. Vi blir fortalt: [1] farge (hvit) ("XXX") a = 2b + 9 (Ett heltall er ni mer enn to ganger det andre heltallet) og [2] farge (hvit) ("XXX") a xx b = 18 (Produktet av heltalene er 18) Basert på [1], vet vi at vi kan erstatte (2b + 9) for en i [2]; gir [3] farge (hvit) ("XXX") (2b + 9) xx b = 18 Forenkling med målet om å skrive dette som standardformular kvadratisk: [5] farge (hvit) ("XXX") 2b ^ 2 + 9b = 18 [6] farge (hvit) ("XXX") 2b ^ 2 + 9b-18 = 0 Du kan bruke kvadrati
Ett tall er 2 mer enn 2 ganger et annet. Deres produkt er 2 mer enn 2 ganger summen deres, hvordan finner du de to heltallene?
La oss ringe til det minste tallet x. Da vil det andre tallet være 2x + 2 Sum: S = x + (2x + 2) = 3x + 2 Produkt: P = x * (2x + 2) = 2x ^ 2 + 2x P = 2 * S + 2 Bytter: 2x ^ 2 + 2x = 2 * (3x + 2) + 2 = 6x + 4 + 2 Alt til en side: 2x ^ 2-4x-6 = 0-> divider alt ved 2 x ^ 2-2x-3 = 0- > faktorise: (x-3) (x + 1) = 0-> x = -1orx = 3 Hvis vi bruker 2x + 2 for det andre nummeret, får vi parene: (-1,0) og (3, 8)
Ett positivt heltall er 5 mindre enn to ganger et annet. Summen av torgene er 610. Hvordan finner du heltallene?
X = 21, y = 13 x ^ 2 + y ^ 2 = 610 x = 2y-5 Erstatter x = 2y-5 til x ^ 2 + y ^ 2 = 610 (2y-5) ^ 2 + y ^ 2 = 610 4y ^ 2-20y + 25 + y ^ 2 = 610 5y ^ 2-20y-585 = 0 Del med 5 y ^ 2-4y-117 = 0 (y + 9) (y-13) = 0 y = -9 eller y = 13 Hvis y = -9, x = 2xx-9-5 = -23 hvis y = 13, x = 2xx13-5 = 21 Må være de positive heltallene