# | Z + 1 | + | z ^ 2 + z + 1 |> = | (z ^ 2 + z + 1) - (z + 1) | = | z ^ 2 | = | z | ^ 2> = 1 #
# | Z + 1 | + | z ^ 2 + z + 1 |> = | z z || + 1 | + | z ^ 2 + z + 1 | = #
# | Z (z + 1) | + | z ^ 2 + z + 1 | = | z ^ 2 + z | + | z ^ 2 + z + 1 |> = | (z ^ 2 + z + 1) - (z ^ 2 + z) | = 1 #
Derfor # | Z + 1 | + | 1 + z + z ^ 2 |> = 1 #, # Z ##i## CC #
og
# | Z + 1 | + | 1 + z + z ^ 2 | + | 1 + z ^ 3 |> = | 1 + z | + | 1 + z + z ^ 2 |> = 1 #,
'#=#', # Z = -1vvz = e ^ ((2k + 1) Multiplikasjon) #, # K ##i## ZZ #