Ved å søke
Grensedefinisjonen angir at når x nærmer seg noe nummer, kommer verdiene nærmere nummeret. I dette tilfellet kan du matematisk deklarere det
Men hvis du har en funksjon som
For å bevise dette, kan vi bruke
Disse ligningene angir at når x nærmer seg 1 fra høyre for kurven (
Her er en grafisk representasjon:
graf {1 / (1-x) -10, 10, -5, 5}
Samlet når det gjelder grenser, pass på å se etter en ligning som har null i nevnen (inkludert andre som
Puh! Det er sikkert mye, men alle detaljene er svært viktige å merke seg for andre funksjoner. Håper dette hjelper!
Hva er grensen når t nærmer seg 0 av (tan6t) / (sin2t)?
Lim_ (t> 0) tan (6t) / sin (2t) = 3. Vi bestemmer dette ved å benytte L'Hospital's Rule. For å omskrive, sier L'Hospital regjering at når gitt en grense for skjemaet lim_ (t a) f (t) / g (t), hvor f (a) og g (a) er verdier som gir grensen til ubestemt (oftest, hvis begge er 0 eller en form for ), så lenge begge funksjonene er kontinuerlige og differensierbare i og i nærheten av a, kan man si at lim_ (t a) f (t) / g (t) = lim_ (t a) (f '(t)) / (g' (t)) Eller i ord er grensen for kvoten til to funksjoner lik grensen for kvotienten av derivatene. I eksemplet som er oppgitt, h
Hva er grensen på 7/4 (x-1) ^ 2 når x nærmer seg 1?
Lim_ (x-> 1) 7/4 (x-1) ^ 2 = 0 Vi vet at f (x) = 7/4 (x-1) ^ 2 = 0 er kontinuerlig over sitt domene. Så lim_ (x-> c) f (x) = f (c) for alle x i domenet til f. Dermed er lim_ (x-> 1) 7/4 (x-1) ^ 2 = 7/4 (1-1) ^ 2 = 0
Hva er grensen på 7 / (4 (x-1) ^ 2) når x nærmer seg 1?
Se nedenfor Først skriv om dette som lim_ (x-> 1) 7 / (4 (x-1) ^ 2 nå faktor (x-1) ^ 2 = (x-1) (x-1) = x ^ 2- 2x + 1 frac {7} {4x ^ 2-2x + 1} nå erstattet x -> 1 frac {7} {4 (1) ^ 2 -2 (1) +1 7/3 derfor lim_ > 1) 7 / (4 (x-1) ^ 2) = 7/6