Svar:
Lengden på diagonalen er
Forklaring:
gitt:
En firkant
Hva trenger vi å finne?
Vi må finn lengden på diagonalen.
Egenskaper av et torg:
-
Alle størrelsene på sider av et torg er kongruente.
-
Alle de fire indre vinklene er kongruente, vinkel =
#90^@# -
Når vi tegner en diagonal, som vist nedenfor, vil vi ha en riktig trekant, med diagonalen er den hypotenusen.
Vær oppmerksom på det
Vi får området på torget.
Vi kan finne side av torget, ved hjelp av områdeformelen.
Areal av et torg:
Siden alle sidene har like storheter, kan vi vurdere en side for beregningen.
Siden alle sidene er like,
Derfor observerer vi det
Tenk på den rette trekanten
Pythagorasetning:
Ved hjelp av kalkulatoren,
Derfor
lengden på diagonalen (BC) er omtrent lik med
Håper det hjelper.
Svar:
14
Forklaring:
Siden er kvadratroten av området
S =
Diagonalen er hypoteket til en riktig trekant dannet av de to sidene så
Hvor C = diagonal A =
så
dette gir
Diagonalen er 14
Lengden på et rektangel overstiger bredden ved 4 cm. Hvis lengden økes med 3 cm og bredden økes med 2 cm, overstiger det nye området det opprinnelige området med 79 kvm. Hvordan finner du dimensjonene til det gitte rektangelet?
13 cm og 17 cm x og x + 4 er de opprinnelige målene. x + 2 og x + 7 er de nye dimensjonene x (x + 4) + 79 = (x + 2) (x + 7) x ^ 2 + 4x + 79 = x ^ 2 + 7x + 2x + 14 x ^ 2 + 4x + 79 = x ^ 2 + 9x + 14 4x + 79 = 9x + 14 79 = 5x + 14 65 = 5x x = 13
Lengden på hver side av firkant A økes med 100 prosent for å lage firkant B. Da økes hver side av firkanten med 50 prosent for å lage firkant C. Med hvilken prosent er arealet av firkant C større enn summen av områdene av kvadrat A og B?
Arealet av C er 80% større enn område av A + område av B Definer som en måleenhet lengden på den ene siden av A. Areal A = 1 ^ 2 = 1 sq.unit Lengden på sider av B er 100% mer enn lengden på sider av a rarr lengden på sider av b = 2 enheter areal på b = 2 ^ 2 = 4 sq.units. Lengden på sider av C er 50% mer enn lengden på sidene av B rarr. Lengden på sider av C = 3 enheter. Område på C = 3 ^ 2 = 9 kvm. Området av C er 9- (1 + 4) = 4 kvadrat enheter som er større enn de kombinerte områdene av A og B. 4 kvadrat enheter representerer 4 / (1 + 4)
PERIMETER av likevel trapesformet ABCD er lik 80 cm. Lengden på linjen AB er 4 ganger større enn lengden på en CD-linje som er 2/5 lengden på linjen BC (eller linjene som er like i lengden). Hva er området med trapesen?
Trapesområdet er 320 cm ^ 2. La trapesen være som vist nedenfor: Her, hvis vi antar mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Derav omkrets er (5a) / 2xx2 + a + 4a = 10a Men omkretsen er 80 cm .. Derav a = 8 cm. og to paallelsider vist som a og b er 8 cm. og 32 cm. Nå tegner vi perpendikulære fron C og D til AB, som danner to identiske rettvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er høyden sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 = 16 og dermed so