Svar:
The Prin. PRD. av det gitte gøyet. er
Forklaring:
La
Vi vet at Hovedperiode av
betyr at,
Derav Prin. PRD. av moroa.
På samme linje kan vi vise at, Prin. PRD. av moroa
Det bør noteres her som for en morsom.
Det er ikke i det hele tatt nødvendig at moroa.
Derimot,
Så, la oss anta det, i vårt tilfelle, for noen
Så, ved å ta,
Derfor, Prin. PRD. av det gitte gøyet. er
Hvordan løser du synd (x + (π / 4)) + synd (x - (π / 4)) = 1?
X = (- 1) ^ n (pi / 4) + npi "", n i ZZ Vi bruker identiteten (ellers kalt faktorformelen): sinA + sinB = 2sin ((A + B) / 2) cos AB) / 2) Som dette: sin (x + (pi / 4)) + sin (x - (pi / 4)) = 2sin [((x + pi / 4) + (x-pi / 4)) / 2] cos [(x + pi / 4 - + (x-pi / 4)) / 2] = 1 => 2sin ((2x) / 2) cos (2 * (pi / 4)) / 2) = 1 => 2sin (x) cos (pi / 4) = 1 => 2 * sin (x) * sqrt (2) / 2 = 1 => synd (x) = 1 / sqrt (2) = sqrt / 2 => farge (blå) (x = pi / 4) Den generelle løsningen er: x = pi / 4 + 2pik og x = pi-pi / 4 + 2pik = pi / 4 + (2k + 1) pi , k i ZZ Du kan kombinere de to settene av løsnin
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2x (5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hva er perioden for f (t) = synd (t / 2) + synd ((2t) / 5)?
20pi Syndens periode t -> 2pi Syndens periode (t / 2) -> 4pi Syndens periode ((2t) / 5) -> (10pi) / 2 = 5pi Minst flere av 4pi og 5pi -> 20 pi Felles periode av f (t) -> 20pi