Hva er ligningen av linjen vist i grafen i skråningspunktform?

Hva er ligningen av linjen vist i grafen i skråningspunktform?
Anonim

Svar:

Punkt-skråningsformen er # Y + 6 = 1/5 (x-4) # eller # Y + 5 = 1/5 (X-9) #, avhengig av hvilket punkt du bruker. Hvis du løser for # Y # For å få helling-avskjæringsformen, vil begge ligningene konvertere til # Y = 1 / 5x-34/5 #.

Forklaring:

Vi må finne bakken først.

Jeg fant to poeng på linjen som vi kan bruke til å finne bakken:

#(4,-6)# og #(9,-5)#

Bruk hellingsformelen:

# M = (y_2-y_1) / (x_2-x_1) #, hvor:

# M # er skråningen, og # (X_1, y_1) # er ett punkt, og # (X_2, y_2) # er det andre punktet. Jeg skal bruke #(4,-6)# til # (X_1, y_1) #, og #(9,-5)# til # (X_2, y_2) #.

# m = (- 5 - (- 6)) / (9-4) #

# M = 1/5 #

Vi kunne ha bestemt hellingen ved å starte på #(4,-6)# og teller hvor mange mellomrom som skal flyttes opp og over for å komme seg til #(9,-5)#, som ville gi deg #1/5#.

Nå som vi har skråningen, kan vi bestemme punkt-skråningsformen for denne linjen.

Formelen for punkt-skråningen er:

# Y-y_1 = m (x-x_1) #

# M = 1/5 #

Jeg skal bruke #(4,-6)# som poenget.

#Y - (- 6) = 1/5 (x-4) #

# Y + 6 = 1/5 (x-4) #

Vi kan også bruke det andre punktet #(9,-5)#.

#Y - (- 5) = 1/5 (X-9) #

# Y + 5 = 1/5 (X-9) #

Hvis du løser for # Y #, som vil konvertere ligningen til helling-avskjæringsform, og begge ligningene kommer ut til # Y = 1 / 5x-34/5 #.