Svar:
Hull 0
Vertikale asymptoter
Horisontale asymptoter 0
Forklaring:
En vertikal asymptote eller et hull er opprettet av et punkt der domenet er lik null, dvs.
Så heller
En horisontal asymptote opprettes der toppen og bunnen av brøkdelen ikke avbryter ut. Mens et hull er når du kan avbryte.
Så
Så som
For horisontale asymptoter forsøker man å finne det som skjer når x nærmer seg uendelig eller negativ uendelighet, og om den har en tendens til en bestemt y-verdi.
For å gjøre dette deles både teller og nevner av brøkdel med den høyeste kraften til
For å gjøre dette må vi vite to regler
og
For grenser til negativ infinty må vi gjøre alle
Så den horisontale asymptoten som x nærmer seg
Det svarte hullet i galaksen M82 har en masse om 500 ganger massen av vår Sol. Den har omtrent samme volum som Jordens måne. Hva er tettheten til dette svarte hullet?
Spørsmålet er feil i verdiene, siden svarte hull ikke har volum. Hvis vi aksepterer det som sant, er tettheten uendelig. Saken om svarte hull er at i formasjonen er tyngdekraften slik at alle partikler blir knust under den. I en nøytronstjerne har du tyngdekraften så høy at protoner knuses sammen med elektroner som skaper nøytroner. I hovedsak betyr dette at i motsetning til "normal" sak som er 99% tomt rom, er en nøytronstjerne nesten 100% solid. Det betyr at i hovedsak en nøytronstjerne er omtrent like tett som du muligens kan få. På grunn av større masse o
Hva er asymptoten (er) og hullet (e) av f (x) = (1 + 1 / x) / (1 / x)?
Det er et hull på x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Dette er en lineær funksjon med gradient 1 og y-intercept 1. Den er definert ved hver x unntatt x = 0 fordi divisjonen av 0 er udefinert.
Hva er asymptoten (er) og hullet (e), hvis noen, av f (x) = 1 / cosx?
Det vil være vertikale asymptoter ved x = pi / 2 + pin, n og heltall. Det vil bli asymptoter. Når nevneren er lik 0, forekommer vertikale asymptoter. La oss sette nevneren til 0 og løse. cosx = 0 x = pi / 2, (3pi) / 2 Siden funksjonen y = 1 / cosx er periodisk, vil det være uendelige vertikale asymptoter, alle følger mønsteret x = pi / 2 + pin, n et heltall. Endelig merk at funksjonen y = 1 / cosx er ekvivalent med y = sekx. Forhåpentligvis hjelper dette!