- Y-koordinatene til de to punktene er de samme.
Det betyr at linjen vil være Parallelt med X-aksen. En linje parallelt med X-aksen (en horisontal linje) har a Helling av null (Ingen bratthet, ingen tilbøyelighet)
Hvis vi må gi en forklaring med tall, så er det hvordan det ville se ut:
#color (grønn) (Slope = (Rise) / (Run) #
De
Og
- Hvis koordinatene til punktene er
# (x_1, y_1) og (x_2, y_2) # , deretter# Slope (http://socratic.org/algebra/graphs-oflinear-equations-and-functions/slope) = (y_2-y_1) / (x_2-x_1) # Her er koordinatene
# (-4,-6)# og#(9,-6)#
Hellingen av linjen passerer gjennom punkter
En linje går gjennom (8, 1) og (6, 4). En annen linje går gjennom (3, 5). Hva er et annet poeng at den andre linjen kan passere gjennom hvis den er parallell med første linjen?
(1,7) Så må vi først finne retningsvektoren mellom (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi vet at en vektorkvasjon består av en posisjonsvektor og en retningsvektor. Vi vet at (3,5) er en posisjon på vektorkvasjonen, slik at vi kan bruke det som vår posisjonvektor og vi vet at det er parallell den andre linjen, slik at vi kan bruke den retningsvektoren (x, y) = (3, 4) + s (-2,3) For å finne et annet punkt på linjen kan du bare erstatte et tall i s bortsett fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er et annet punkt.
En linje går gjennom (4, 3) og (2, 5). En andre linje går gjennom (5, 6). Hva er et annet poeng at den andre linjen kan passere gjennom hvis den er parallell med første linjen?
(3,8) Så må vi først finne retningsvektoren mellom (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi vet at en vektorkvasjon består av en posisjonsvektor og en retningsvektor. Vi vet at (5,6) er en posisjon på vektor-ligningen, slik at vi kan bruke det som vår positionsvektor, og vi vet at den er parallell den andre linjen, slik at vi kan bruke den retningsvektoren (x, y) = (5, 6) + s (-2,2) For å finne et annet punkt på linjen kan du bare erstatte et tall i s bortsett fra 0 slik at vi kan velge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et annet punkt.
Skriv punkt-skråningsformen til ligningen med den angitte hellingen som går gjennom det angitte punktet. A.) linjen med helling -4 passerer gjennom (5,4). og også B.) linjen med helling 2 passerer gjennom (-1, -2). Vennligst hjelp, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "likningen av en linje i" farge (blå) "punkt-skråform" er. • farge (hvit) (x) y-y_1 = m (x-x_1) "hvor m er skråningen og" (x_1, y_1) "et punkt på linjen" (A) "gitt" m = -4 "og "(x_1, y_1) = (5,4)" erstatter disse verdiene i ligningen gir "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråform "(B)" gitt "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "