Svar:
Se forklaring
Forklaring:
La
Området er
finne det første derivatet vi får
og vi har
Derfor er det største området
Åpenbart er området et torg.
John bestemte seg for å utvide sitt bakgårdsdekk. Dimensjonene til rektangulært dekk er 25 fot med 30 fot. Hans nye dekk vil være 50 meter med 600 fot. Hvor mye større vil det nye dekket være?
29.250 kvadratmeter større eller 40 ganger større. Nåværende størrelse: 25'xx30 '= 750 sq.ft. Ny størrelse: 50'xx600 '= 30.000 sq. Ft. Forskjell i størrelse: 30.000 sq.ft. - 750 kvm = 29 250 kvm Som forhold: (30.000 kvm) / (750 sq.ft.) = 40
Vanessa har 180 meter gjerdet som hun har til hensikt å bruke til å bygge et rektangulært lekeområde for hunden hennes. Hun ønsker at lekeområdet skal legge minst 1800 kvadratmeter. Hva er de mulige breddene på lekeområdet?
De mulige breddene på lekeområdet er: 30 fot eller 60 ft. La lengden være l og bredden være w Perimeter = 180 ft.= 2 (l + w) --------- (1) og areal = 1800 ft. ^ 2 = lxx w ---------- (2) Fra (1), 2l + 2w = 180 => 2l = 180-2w => l = (180-2w) / 2 => l = 90- w Erstatt denne verdien av l i (2), 1800 = (90-w) xx w => 1800 = 90w - w ^ 2 => w ^ 2 -90w + 1800 = 0 Løsning av denne kvadratiske ligningen vi har: => w ^ 2 -30w -60w + 1800 = 0 => w (w -30) -60 (w- 30) = 0 => (w-30) (w-60) = 0 derfor w = 30 eller w = 60 Mulige bredder av lekeområdet er: 30 fot eller 60 fot.
La oss si at jeg har $ 480 til gjerdet i en rektangulær hage. Fekting for nord og sørsiden av hagen koster $ 10 per fot, og gjerdet for øst og vestsiden koster $ 15 per fot. Hvordan finner jeg dimensjonene til den største mulige hagen.?
La oss kalle lengden på N og S-sidene x (føtter) og de andre to vi vil ringe y (også i føtter). Da vil kostnaden for gjerdet være: 2 * x * $ 10 for N + S og 2 * y * $ 15 for E + W Da vil ligningen for den totale kostnaden av gjerdet være: 20x + 30y = 480 Vi skiller ut y: 30y = 480-20x-> y = 16-2 / 3 x Område: A = x * y, erstatter y i ligningen vi får: A = x * (16-2 / 3 x) = 16x-2/3 x ^ 2 For å finne maksimumet må vi skille denne funksjonen og deretter sette derivatet til 0 A '= 16-2 * 2 / 3x = 16-4 / 3 x = 0 Som løser for x = 12 Bytter i den tidligere ligningen